Transistor count

The transistor count is the number of transistors in an electronic device (typically on a single substrate or "chip"). It is the most common measure of integrated circuit complexity (although the majority of transistors in modern microprocessors are contained in the cache memories, which consist mostly of the same memory cell circuits replicated many times). The rate at which MOS transistor counts have increased generally follows Moore's law, which observed that the transistor count doubles approximately every two years.[1] However, being directly proportional to the area of a chip, transistor count does not represent how advanced the corresponding manufacturing technology is: a better indication of this is the transistor density (the ratio of a chip's transistor count to its area).

As of 2023, the highest transistor count in flash memory is Micron's 2 terabyte (3D-stacked) 16-die, 232-layer V-NAND flash memory chip, with 5.3 trillion floating-gate MOSFETs (3 bits per transistor).

The highest transistor count in a single chip processor is that of the deep learning processor Wafer Scale Engine 2 by Cerebras. It has 2.6 trillion MOSFETs in 84 exposed fields (dies) on a wafer, manufactured using TSMC's 7 nm FinFET process.[2][3][4][5][6]

As of 2023, the GPU with the highest transistor count is AMD's MI300X, built on TSMC's N5 process and totalling 153 billion MOSFETs.

The highest transistor count in a consumer microprocessor is 134 billion transistors, in Apple's ARM-based dual-die M2 Ultra system on a chip, which is fabricated using TSMC's 5 nm semiconductor manufacturing process.[7]

YearComponentNameNumber of MOSFETs
(in trillions)
Remarks
2022Flash memoryMicron's V-NAND chip5.3stacked package of sixteen 232-layer 3D NAND dies
2020any processorWafer Scale Engine 22.6wafer-scale design of 84 exposed fields (dies)
2023GPUMI300X0.153
2023microprocessor
(commercial)
M2 Ultra0.134dual-die SoC; entire M2 Ultra is a multi-chip module
2020DLPColossus Mk2 GC2000.059An IPU in contrast to CPU and GPU

In terms of computer systems that consist of numerous integrated circuits, the supercomputer with the highest transistor count as of 2016 was the Chinese-designed Sunway TaihuLight, which has for all CPUs/nodes combined "about 400 trillion transistors in the processing part of the hardware" and "the DRAM includes about 12 quadrillion transistors, and that's about 97 percent of all the transistors."[8] To compare, the smallest computer, as of 2018 dwarfed by a grain of rice, had on the order of 100,000 transistors. Early experimental solid-state computers had as few as 130 transistors but used large amounts of diode logic. The first carbon nanotube computer had 178 transistors and was a 1-bit one-instruction set computer, while a later one is 16-bit (its instruction set is 32-bit RISC-V though).

Ionic transistor chips ("water-based" analog limited processor), have up to hundreds of such transistors.[9]

Estimates of the total numbers of transistors manufactured:

  • Up to 2014: 2.9×1021
  • Up to 2018: 1.3×1022[10][11]

Transistor count

Plot of MOS transistor counts for microprocessors against dates of in­tro­duction. The curve shows counts doubling every two years, per Moore's law

Microprocessors

Part of an IBM 7070 card cage populated with Standard Modular System cards

A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit. It is a multi-purpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.

The development of MOS integrated circuit technology in the 1960s led to the development of the first microprocessors.[12] The 20-bit MP944, developed by Garrett AiResearch for the U.S. Navy's F-14 Tomcat fighter in 1970, is considered by its designer Ray Holt to be the first microprocessor.[13] It was a multi-chip microprocessor, fabricated on six MOS chips. However, it was classified by the Navy until 1998. The 4-bit Intel 4004, released in 1971, was the first single-chip microprocessor.

Modern microprocessors typically include on-chip cache memories. The number of transistors used for these cache memories typically far exceeds the number of transistors used to implement the logic of the microprocessor (that is, excluding the cache). For example, the last DEC Alpha chip uses 90% of its transistors for cache.[14]

Processor Transistor count Year Designer Process
(nm)
Area (mm2) Transistor
density
(tr./mm2)
MP944 (20-bit, 6-chip, 28 chips total) 74,442 (5,360 excl. ROM & RAM)[15][16] 1970[13][lower-alpha 1] Garrett AiResearch ? ? ?
Intel 4004 (4-bit, 16-pin) 2,250 1971 Intel 10,000 nm 12 mm2 188
TMX 1795 (?-bit, 24-pin) 3,078[17] 1971 Texas Instruments ? 30.64 mm2 100.5
Intel 8008 (8-bit, 18-pin) 3,500 1972 Intel 10,000 nm 14 mm2 250
NEC μCOM-4 (4-bit, 42-pin) 2,500[18][19] 1973 NEC 7,500 nm[20] ? ?
Toshiba TLCS-12 (12-bit) 11,000+[21] 1973 Toshiba 6,000 nm 32 mm2 340+
Intel 4040 (4-bit, 16-pin) 3,000 1974 Intel 10,000 nm 12 mm2 250
Motorola 6800 (8-bit, 40-pin) 4,100 1974 Motorola 6,000 nm 16 mm2 256
Intel 8080 (8-bit, 40-pin) 6,000 1974 Intel 6,000 nm 20 mm2 300
TMS 1000 (4-bit, 28-pin) 8,000[lower-alpha 2] 1974[22] Texas Instruments 8,000 nm 11 mm2 730
MOS Technology 6502 (8-bit, 40-pin) 4,528[lower-alpha 3][23] 1975 MOS Technology 8,000 nm 21 mm2 216
Intersil IM6100 (12-bit, 40-pin; clone of PDP-8) 4,000 1975 Intersil ? ? ?
CDP 1801 (8-bit, 2-chip, 40-pin) 5,000 1975 RCA ? ? ?
RCA 1802 (8-bit, 40-pin) 5,000 1976 RCA 5,000 nm 27 mm2 185
Zilog Z80 (8-bit, 4-bit ALU, 40-pin) 8,500[lower-alpha 4] 1976 Zilog 4,000 nm 18 mm2 470
Intel 8085 (8-bit, 40-pin) 6,500 1976 Intel 3,000 nm 20 mm2 325
TMS9900 (16-bit) 8,000 1976 Texas Instruments ? ? ?
Bellmac-8 (8-bit) 7,000 1977 Bell Labs 5,000 nm ? ?
Motorola 6809 (8-bit with some 16-bit features, 40-pin) 9,000 1978 Motorola 5,000 nm 21 mm2 430
Intel 8086 (16-bit, 40-pin) 29,000[24] 1978 Intel 3,000 nm 33 mm2 880
Zilog Z8000 (16-bit) 17,500[25] 1979 Zilog ? ? ?
Intel 8088 (16-bit, 8-bit data bus) 29,000 1979 Intel 3,000 nm 33 mm2 880
Motorola 68000 (16/32-bit, 32-bit registers, 16-bit ALU) 68,000[26] 1979 Motorola 3,500 nm 44 mm2 1,550
Intel 8051 (8-bit, 40-pin) 50,000 1980 Intel ? ? ?
WDC 65C02 11,500[27] 1981 WDC 3,000 nm 6 mm2 1,920
ROMP (32-bit) 45,000 1981 IBM 2,000 nm 58.52 mm2 770
Intel 80186 (16-bit, 68-pin) 55,000 1982 Intel 3,000 nm 60 mm2 920
Intel 80286 (16-bit, 68-pin) 134,000 1982 Intel 1,500 nm 49 mm2 2,730
WDC 65C816 (8/16-bit) 22,000[28] 1983 WDC 3,000 nm[29] 9 mm2 2,400
NEC V20 63,000 1984 NEC ? ? ?
Motorola 68020 (32-bit; 114 pins used) 190,000[30] 1984 Motorola 2,000 nm 85 mm2 2,200
Intel 80386 (32-bit, 132-pin; no cache) 275,000 1985 Intel 1,500 nm 104 mm2 2,640
ARM 1 (32-bit; no cache) 25,000[30] 1985 Acorn 3,000 nm 50 mm2 500
Novix NC4016 (16-bit) 16,000[31] 1985[32] Harris Corporation 3,000 nm[33] ? ?
SPARC MB86900 (32-bit; no cache) 110,000[34] 1986 Fujitsu 1,200 nm ? ?
NEC V60[35] (32-bit; no cache) 375,000 1986 NEC 1,500 nm ? ?
ARM 2 (32-bit, 84-pin; no cache) 27,000[36][30] 1986 Acorn 2,000 nm 30.25 mm2 890
Z80000 (32-bit; very small cache) 91,000 1986 Zilog ? ? ?
NEC V70[35] (32-bit; no cache) 385,000 1987 NEC 1,500 nm ? ?
Hitachi Gmicro/200[37] 730,000 1987 Hitachi 1,000 nm ? ?
Motorola 68030 (32-bit, very small caches) 273,000 1987 Motorola 800 nm 102 mm2 2,680
TI Explorer's 32-bit Lisp machine chip 553,000[38] 1987 Texas Instruments 2,000 nm[39] ? ?
DEC WRL MultiTitan 180,000[40] 1988 DEC WRL 1,500 nm 61 mm2 2,950
Intel i960 (32-bit, 33-bit memory subsystem, no cache) 250,000[41] 1988 Intel 1,500 nm[42] ? ?
Intel i960CA (32-bit, cache) 600,000[42] 1989 Intel 800 nm 143 mm2 4,200
Intel i860 (32/64-bit, 128-bit SIMD, cache, VLIW) 1,000,000[43] 1989 Intel ? ? ?
Intel 80486 (32-bit, 4 KB cache) 1,180,235 1989 Intel 1,000 nm 173 mm2 6,822
ARM 3 (32-bit, 4 KB cache) 310,000 1989 Acorn 1,500 nm 87 mm2 3,600
POWER1 (9-chip module, 72 kB of cache) 6,900,000[44] 1990 IBM 1,000 nm 1,283.61 mm2 5,375
Motorola 68040 (32-bit, 8 KB caches) 1,200,000 1990 Motorola 650 nm 152 mm2 7,900
R4000 (64-bit, 16 KB of caches) 1,350,000 1991 MIPS 1,000 nm 213 mm2 6,340
ARM 6 (32-bit, no cache for this 60 variant) 35,000 1991 ARM 800 nm ? ?
Hitachi SH-1 (32-bit, no cache) 600,000[45] 1992[46] Hitachi 800 nm 100 mm2 6,000
Intel i960CF (32-bit, cache) 900,000[42] 1992 Intel ? 125 mm2 7,200
Alpha 21064 (64-bit, 290-pin; 16 KB of caches) 1,680,000 1992 DEC 750 nm 233.52 mm2 7,190
Hitachi HARP-1 (32-bit, cache) 2,800,000[47] 1993 Hitachi 500 nm 267 mm2 10,500
Pentium (32-bit, 16 KB of caches) 3,100,000 1993 Intel 800 nm 294 mm2 10,500
POWER2 (8-chip module, 288 kB of cache) 23,037,000[48] 1993 IBM 720 nm 1,217.39 mm2 18,923
ARM700 (32-bit; 8 KB cache) 578,977[49] 1994 ARM 700 nm 68.51 mm2 8,451
MuP21 (21-bit,[50] 40-pin; includes video) 7,000[51] 1994 Offete Enterprises 1,200 nm ? ?
Motorola 68060 (32-bit, 16 KB of caches) 2,500,000 1994 Motorola 600 nm 218 mm2 11,500
PowerPC 601 (32-bit, 32 KB of caches) 2,800,000[52] 1994 Apple, IBM, Motorola 600 nm 121 mm2 23,000
PowerPC 603 (32-bit, 16 KB of caches) 1,600,000[53] 1994 Apple, IBM, Motorola 500 nm 84.76 mm2 18,900
PowerPC 603e (32-bit, 32 KB of caches) 2,600,000[54] 1995 Apple, IBM, Motorola 500 nm 98 mm2 26,500
Alpha 21164 EV5 (64-bit, 112 kB cache) 9,300,000[55] 1995 DEC 500 nm 298.65 mm2 31,140
SA-110 (32-bit, 32 KB of caches) 2,500,000[30] 1995 Acorn, DEC, Apple 350 nm 50 mm2 50,000
Pentium Pro (32-bit, 16 KB of caches;[56] L2 cache on-package, but on separate die) 5,500,000[57] 1995 Intel 500 nm 307 mm2 18,000
PA-8000 64-bit, no cache 3,800,000[58] 1995 HP 500 nm 337.69 mm2 11,300
Alpha 21164A EV56 (64-bit, 112 kB cache) 9,660,000[59] 1996 DEC 350 nm 208.8 mm2 46,260
AMD K5 (32-bit, caches) 4,300,000 1996 AMD 500 nm 251 mm2 17,000
Pentium II Klamath (32-bit, 64-bit SIMD, caches) 7,500,000 1997 Intel 350 nm 195 mm2 39,000
AMD K6 (32-bit, caches) 8,800,000 1997 AMD 350 nm 162 mm2 54,000
F21 (21-bit; includes e.g. video) 15,000 1997[51] Offete Enterprises ? ? ?
AVR (8-bit, 40-pin; w/memory) 140,000 (48,000
excl. memory[60])
1997 Nordic VLSI/Atmel ? ? ?
Pentium II Deschutes (32-bit, large cache) 7,500,000 1998 Intel 250 nm 113 mm2 66,000
Alpha 21264 EV6 (64-bit) 15,200,000[61] 1998 DEC 350 nm 313.96 mm2 48,400
Alpha 21164PC PCA57 (64-bit, 48 kB cache) 5,700,000 1998 Samsung 280 nm 100.5 mm2 56,700
Hitachi SH-4 (32-bit, caches)[62] 3,200,000[63] 1998 Hitachi 250 nm 57.76 mm2 55,400
ARM 9TDMI (32-bit, no cache) 111,000[30] 1999 Acorn 350 nm 4.8 mm2 23,100
Pentium III Katmai (32-bit, 128-bit SIMD, caches) 9,500,000 1999 Intel 250 nm 128 mm2 74,000
Emotion Engine (64-bit, 128-bit SIMD, cache) 10,500,000[64]
– 13,500,000[65]
1999 Sony, Toshiba 250 nm 239.7 mm2[64] 43,800
56,300
Pentium II Mobile Dixon (32-bit, caches) 27,400,000 1999 Intel 180 nm 180 mm2 152,000
AMD K6-III (32-bit, caches) 21,300,000 1999 AMD 250 nm 118 mm2 181,000
AMD K7 (32-bit, caches) 22,000,000 1999 AMD 250 nm 184 mm2 120,000
Gekko (32-bit, large cache) 21,000,000[66] 2000 IBM, Nintendo 180 nm 43 mm2 490,000 (check)
Pentium III Coppermine (32-bit, large cache) 21,000,000 2000 Intel 180 nm 80 mm2 263,000
Pentium 4 Willamette (32-bit, large cache) 42,000,000 2000 Intel 180 nm 217 mm2 194,000
SPARC64 V (64-bit, large cache) 191,000,000[67] 2001 Fujitsu 130 nm[68] 290 mm2 659,000
Pentium III Tualatin (32-bit, large cache) 45,000,000 2001 Intel 130 nm 81 mm2 556,000
Pentium 4 Northwood (32-bit, large cache) 55,000,000 2002 Intel 130 nm 145 mm2 379,000
Itanium 2 McKinley (64-bit, large cache) 220,000,000 2002 Intel 180 nm 421 mm2 523,000
Alpha 21364 (64-bit, 946-pin, SIMD, very large caches) 152,000,000[14] 2003 DEC 180 nm 397 mm2 383,000
AMD K7 Barton (32-bit, large cache) 54,300,000 2003 AMD 130 nm 101 mm2 538,000
AMD K8 (64-bit, large cache) 105,900,000 2003 AMD 130 nm 193 mm2 548,700
Pentium M Banias (32-bit) 77,000,000[69] 2003 Intel 130 nm 83 mm2 928,000
Itanium 2 Madison 6M (64-bit) 410,000,000 2003 Intel 130 nm 374 mm2 1,096,000
PlayStation 2 single chip (CPU + GPU) 53,500,000[70] 2003[71] Sony, Toshiba 90 nm[72]
130 nm[73][74]
86 mm² 622,100
Pentium 4 Prescott (32-bit, large cache) 112,000,000 2004 Intel 90 nm 110 mm2 1,018,000
Pentium M Dothan (32-bit) 144,000,000[75] 2004 Intel 90 nm 87 mm2 1,655,000
SPARC64 V+ (64-bit, large cache) 400,000,000[76] 2004 Fujitsu 90 nm 294 mm2 1,360,000
Itanium 2 (64-bit;9 MB cache) 592,000,000 2004 Intel 130 nm 432 mm2 1,370,000
Pentium 4 Prescott-2M (32-bit, large cache) 169,000,000 2005 Intel 90 nm 143 mm2 1,182,000
Pentium D Smithfield (64-bit, large cache) 228,000,000 2005 Intel 90 nm 206 mm2 1,107,000
Xenon (64-bit, 128-bit SIMD, large cache) 165,000,000 2005 IBM 90 nm ? ?
Cell (32-bit, cache) 250,000,000[77] 2005 Sony, IBM, Toshiba 90 nm 221 mm2 1,131,000
Pentium 4 Cedar Mill (32-bit, large cache) 184,000,000 2006 Intel 65 nm 90 mm2 2,044,000
Pentium D Presler (64-bit, large cache) 362,000,000 [78] 2006 Intel 65 nm 162 mm2 2,235,000
Core 2 Duo Conroe (dual-core 64-bit, large caches) 291,000,000 2006 Intel 65 nm 143 mm2 2,035,000
Dual-core Itanium 2 (64-bit, SIMD, large caches) 1,700,000,000[79] 2006 Intel 90 nm 596 mm2 2,852,000
AMD K10 quad-core 2M L3 (64-bit, large caches) 463,000,000[80] 2007 AMD 65 nm 283 mm2 1,636,000
ARM Cortex-A9 (32-bit, (optional) SIMD, caches) 26,000,000[81] 2007 ARM 45 nm 31 mm2 839,000
Core 2 Duo Wolfdale (dual-core 64-bit, SIMD, caches) 411,000,000 2007 Intel 45 nm 107 mm2 3,841,000
POWER6 (64-bit, large caches) 789,000,000 2007 IBM 65 nm 341 mm2 2,314,000
Core 2 Duo Allendale (dual-core 64-bit, SIMD, large caches) 169,000,000 2007 Intel 65 nm 111 mm2 1,523,000
Uniphier 250,000,000[82] 2007 Matsushita 45 nm ? ?
SPARC64 VI (64-bit, SIMD, large caches) 540,000,000 2007[83] Fujitsu 90 nm 421 mm2 1,283,000
Core 2 Duo Wolfdale 3M (dual-core 64-bit, SIMD, large caches) 230,000,000 2008 Intel 45 nm 83 mm2 2,771,000
Core i7 (quad-core 64-bit, SIMD, large caches) 731,000,000 2008 Intel 45 nm 263 mm2 2,779,000
AMD K10 quad-core 6M L3 (64-bit, SIMD, large caches) 758,000,000[80] 2008 AMD 45 nm 258 mm2 2,938,000
Atom (32-bit, large cache) 47,000,000 2008 Intel 45 nm 24 mm2 1,958,000
SPARC64 VII (64-bit, SIMD, large caches) 600,000,000 2008[84] Fujitsu 65 nm 445 mm2 1,348,000
Six-core Xeon 7400 (64-bit, SIMD, large caches) 1,900,000,000 2008 Intel 45 nm 503 mm2 3,777,000
Six-core Opteron 2400 (64-bit, SIMD, large caches) 904,000,000 2009 AMD 45 nm 346 mm2 2,613,000
SPARC64 VIIIfx (64-bit, SIMD, large caches) 760,000,000[85] 2009 Fujitsu 45 nm 513 mm2 1,481,000
Atom (Pineview) 64-bit, 1-core, 512 kB L2 cache 123,000,000[86] 2010 Intel 45 nm 66 mm² 1,864,000
Atom (Pineview) 64-bit, 2-core, 1 MB L2 cache 176,000,000[87] 2010 Intel 45 nm 87 mm² 2,023,000
SPARC T3 (16-core 64-bit, SIMD, large caches) 1,000,000,000[88] 2010 Sun/Oracle 40 nm 377 mm2 2,653,000
Six-core Core i7 (Gulftown) 1,170,000,000 2010 Intel 32 nm 240 mm2 4,875,000
POWER7 32M L3 (8-core 64-bit, SIMD, large caches) 1,200,000,000 2010 IBM 45 nm 567 mm2 2,116,000
Quad-core z196[89] (64-bit, very large caches) 1,400,000,000 2010 IBM 45 nm 512 mm2 2,734,000
Quad-core Itanium Tukwila (64-bit, SIMD, large caches) 2,000,000,000[90] 2010 Intel 65 nm 699 mm2 2,861,000
Xeon Nehalem-EX (8-core 64-bit, SIMD, large caches) 2,300,000,000[91] 2010 Intel 45 nm 684 mm2 3,363,000
SPARC64 IXfx (64-bit, SIMD, large caches) 1,870,000,000[92] 2011 Fujitsu 40 nm 484 mm2 3,864,000
Quad-core + GPU Core i7 (64-bit, SIMD, large caches) 1,160,000,000 2011 Intel 32 nm 216 mm2 5,370,000
Six-core Core i7/8-core Xeon E5
(Sandy Bridge-E/EP) (64-bit, SIMD, large caches)
2,270,000,000[93] 2011 Intel 32 nm 434 mm2 5,230,000
Xeon Westmere-EX (10-core 64-bit, SIMD, large caches) 2,600,000,000 2011 Intel 32 nm 512 mm2 5,078,000
Atom "Medfield" (64-bit) 432,000,000[94] 2012 Intel 32 nm 64 mm2 6,750,000
SPARC64 X (64-bit, SIMD, caches) 2,990,000,000[95] 2012 Fujitsu 28 nm 600 mm2 4,983,000
AMD Bulldozer (8-core 64-bit, SIMD, caches) 1,200,000,000[96] 2012 AMD 32 nm 315 mm2 3,810,000
Quad-core + GPU AMD Trinity (64-bit, SIMD, caches) 1,303,000,000 2012 AMD 32 nm 246 mm2 5,297,000
Quad-core + GPU Core i7 Ivy Bridge (64-bit, SIMD, caches) 1,400,000,000 2012 Intel 22 nm 160 mm2 8,750,000
POWER7+ (8-core 64-bit, SIMD, 80 MB L3 cache) 2,100,000,000 2012 IBM 32 nm 567 mm2 3,704,000
Six-core zEC12 (64-bit, SIMD, large caches) 2,750,000,000 2012 IBM 32 nm 597 mm2 4,606,000
Itanium Poulson (8-core 64-bit, SIMD, caches) 3,100,000,000 2012 Intel 32 nm 544 mm2 5,699,000
Xeon Phi (61-core 32-bit, 512-bit SIMD, caches) 5,000,000,000[97] 2012 Intel 22 nm 720 mm2 6,944,000
Apple A7 (dual-core 64/32-bit ARM64, "mobile SoC", SIMD, caches) 1,000,000,000 2013 Apple 28 nm 102 mm2 9,804,000
Six-core Core i7 Ivy Bridge E (64-bit, SIMD, caches) 1,860,000,000 2013 Intel 22 nm 256 mm2 7,266,000
POWER8 (12-core 64-bit, SIMD, caches) 4,200,000,000 2013 IBM 22 nm 650 mm2 6,462,000
Xbox One main SoC (64-bit, SIMD, caches) 5,000,000,000 2013 Microsoft, AMD 28 nm 363 mm2 13,770,000
Quad-core + GPU Core i7 Haswell (64-bit, SIMD, caches) 1,400,000,000[98] 2014 Intel 22 nm 177 mm2 7,910,000
Apple A8 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 2,000,000,000 2014 Apple 20 nm 89 mm2 22,470,000
Core i7 Haswell-E (8-core 64-bit, SIMD, caches) 2,600,000,000[99] 2014 Intel 22 nm 355 mm2 7,324,000
Apple A8X (tri-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 3,000,000,000[100] 2014 Apple 20 nm 128 mm2 23,440,000
Xeon Ivy Bridge-EX (15-core 64-bit, SIMD, caches) 4,310,000,000[101] 2014 Intel 22 nm 541 mm2 7,967,000
Xeon Haswell-E5 (18-core 64-bit, SIMD, caches) 5,560,000,000[102] 2014 Intel 22 nm 661 mm2 8,411,000
Quad-core + GPU GT2 Core i7 Skylake K (64-bit, SIMD, caches) 1,750,000,000 2015 Intel 14 nm 122 mm2 14,340,000
Dual-core + GPU Iris Core i7 Broadwell-U (64-bit, SIMD, caches) 1,900,000,000[103] 2015 Intel 14 nm 133 mm2 14,290,000
Apple A9 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 2,000,000,000+ 2015 Apple 14 nm
(Samsung)
96 mm2
(Samsung)
20,800,000+
16 nm
(TSMC)
104.5 mm2
(TSMC)
19,100,000+
Apple A9X (dual core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 3,000,000,000+ 2015 Apple 16 nm 143.9 mm2 20,800,000+
IBM z13 (64-bit, caches) 3,990,000,000 2015 IBM 22 nm 678 mm2 5,885,000
IBM z13 Storage Controller 7,100,000,000 2015 IBM 22 nm 678 mm2 10,472,000
SPARC M7 (32-core 64-bit, SIMD, caches) 10,000,000,000[104] 2015 Oracle 20 nm ? ?
Core i7 Broadwell-E (10-core 64-bit, SIMD, caches) 3,200,000,000[105] 2016 Intel 14 nm 246 mm2[106] 13,010,000
Apple A10 Fusion (quad-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 3,300,000,000 2016 Apple 16 nm 125 mm2 26,400,000
HiSilicon Kirin 960 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 4,000,000,000[107] 2016 Huawei 16 nm 110.00 mm2 36,360,000
Xeon Broadwell-E5 (22-core 64-bit, SIMD, caches) 7,200,000,000[108] 2016 Intel 14 nm 456 mm2 15,790,000
Xeon Phi (72-core 64-bit, 512-bit SIMD, caches) 8,000,000,000 2016 Intel 14 nm 683 mm2 11,710,000
Zip CPU (32-bit, for FPGAs) 1,286 6-LUTs[109] 2016 Gisselquist Technology ? ? ?
Qualcomm Snapdragon 835 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 3,000,000,000[110][111] 2016 Qualcomm 10 nm 72.3 mm2 41,490,000
Apple A11 Bionic (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 4,300,000,000 2017 Apple 10 nm 89.23 mm2 48,190,000
AMD Zen CCX (core complex unit: 4 cores, 8 MB L3 cache) 1,400,000,000[112] 2017 AMD 14 nm
(GF 14LPP)
44 mm² 31,800,000
AMD Zeppelin SoC Ryzen (64-bit, SIMD, caches) 4,800,000,000[113] 2017 AMD 14 nm 192 mm2 25,000,000
AMD Ryzen 5 1600 Ryzen (64-bit, SIMD, caches) 4,800,000,000[114] 2017 AMD 14 nm 213 mm2 22,530,000
IBM z14 (64-bit, SIMD, caches) 6,100,000,000 2017 IBM 14 nm 696 mm2 8,764,000
IBM z14 Storage Controller (64-bit) 9,700,000,000 2017 IBM 14 nm 696 mm2 13,940,000
HiSilicon Kirin 970 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 5,500,000,000[115] 2017 Huawei 10 nm 96.72 mm2 56,900,000
Xbox One X (Project Scorpio) main SoC (64-bit, SIMD, caches) 7,000,000,000[116] 2017 Microsoft, AMD 16 nm 360 mm2[116] 19,440,000
Xeon Platinum 8180 (28-core 64-bit, SIMD, caches) 8,000,000,000[117] 2017 Intel 14 nm ? ?
Xeon (unspecified) 7,100,000,000[118] 2017 Intel 14 nm 672 mm² 10,570,000
POWER9 (64-bit, SIMD, caches) 8,000,000,000 2017 IBM 14 nm 695 mm2 11,500,000
Freedom U500 Base Platform Chip (E51, 4×U54) RISC-V (64-bit, caches) 250,000,000[119] 2017 SiFive 28 nm ~30 mm2 8,330,000
SPARC64 XII (12-core 64-bit, SIMD, caches) 5,450,000,000[120] 2017 Fujitsu 20 nm 795 mm2 6,850,000
Apple A10X Fusion (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 4,300,000,000[121] 2017 Apple 10 nm 96.40 mm2 44,600,000
Centriq 2400 (64/32-bit, SIMD, caches) 18,000,000,000[122] 2017 Qualcomm 10 nm 398 mm2 45,200,000
AMD Epyc (32-core 64-bit, SIMD, caches) 19,200,000,000 2017 AMD 14 nm 768 mm2 25,000,000
Qualcomm Snapdragon 845 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 5,300,000,000[123] 2017 Qualcomm 10 nm 94 mm2 56,400,000
Qualcomm Snapdragon 850 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 5,300,000,000[124] 2017 Qualcomm 10 nm 94 mm2 56,400,000
HiSilicon Kirin 710 (octa-core ARM64 "mobile SoC", SIMD, caches) 5,500,000,000[125] 2018 Huawei 12 nm ? ?
Apple A12 Bionic (hexa-core ARM64 "mobile SoC", SIMD, caches) 6,900,000,000
[126][127]
2018 Apple 7 nm 83.27 mm2 82,900,000
HiSilicon Kirin 980 (octa-core ARM64 "mobile SoC", SIMD, caches) 6,900,000,000[128] 2018 Huawei 7 nm 74.13 mm2 93,100,000
Qualcomm Snapdragon 8cx / SCX8180 (octa-core ARM64 "mobile SoC", SIMD, caches) 8,500,000,000[129] 2018 Qualcomm 7 nm 112 mm2 75,900,000
Apple A12X Bionic (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 10,000,000,000[130] 2018 Apple 7 nm 122 mm2 82,000,000
Fujitsu A64FX (64/32-bit, SIMD, caches) 8,786,000,000[131] 2018[132] Fujitsu 7 nm ? ?
Tegra Xavier SoC (64/32-bit) 9,000,000,000[133] 2018 Nvidia 12 nm 350 mm2 25,700,000
Qualcomm Snapdragon 855 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 6,700,000,000[134] 2018 Qualcomm 7 nm 73 mm² 91,800,000
AMD Zen 2 core (0.5 MB L2 + 4 MB L3 cache) 475,000,000[135] 2019 AMD 7 nm 7.83 mm² 60,664,000
AMD Zen 2 CCX (core complex: 4 cores, 16 MB L3 cache) 1,900,000,000[135] 2019 AMD 7 nm 31.32 mm² 60,664,000
AMD Zen 2 CCD (core complex die: 8 cores, 32 MB L3 cache) 3,800,000,000[135] 2019 AMD 7 nm 74 mm² 51,350,000
AMD Zen 2 client I/O die 2,090,000,000[135] 2019 AMD 12 nm 125 mm² 16,720,000
AMD Zen 2 server I/O die 8,340,000,000[135] 2019 AMD 12 nm 416 mm² 20,050,000
AMD Zen 2 Renoir die 9,800,000,000[135] 2019 AMD 7 nm 156 mm² 62,820,000
AMD Ryzen 7 3700X (64-bit, SIMD, caches, I/O die) 5,990,000,000[136][lower-alpha 5] 2019 AMD 7 & 12 nm
(TSMC)
199&nbsp
(74+125) mm2
30,100,000
HiSilicon Kirin 990 4G 8,000,000,000[137] 2019 Huawei 7 nm 90.00 mm2 89,000,000
Apple A13 (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches) 8,500,000,000
[138][139]
2019 Apple 7 nm 98.48 mm2 86,300,000
IBM z15 CP chip (12 cores, 256 MB L3 cache) 9,200,000,000[140] 2019 IBM 14 nm 696 mm2 13,220,000
IBM z15 SC chip (960 MB L4 cache) 12,200,000,000 2019 IBM 14 nm 696 mm2 17,530,000
AMD Ryzen 9 3900X (64-bit, SIMD, caches, I/O die) 9,890,000,000
[141][142]
2019 AMD 7 & 12 nm
(TSMC)
273 mm2 36,230,000
HiSilicon Kirin 990 5G 10,300,000,000[143] 2019 Huawei 7 nm 113.31 mm2 90,900,000
AWS Graviton2 (64-bit, 64-core ARM-based, SIMD, caches)[144][145] 30,000,000,000 2019 Amazon 7 nm ? ?
AMD Epyc Rome (64-bit, SIMD, caches) 39,540,000,000
[141][142]
2019 AMD 7 & 12 nm
(TSMC)
1,008 mm2 39,226,000
Qualcomm Snapdragon 865 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 10,300,000,000[146] 2019 Qualcomm 7 nm 83.54 mm2[147] 123,300,000
TI Jacinto TDA4VM (ARM A72, DSP, SRAM) 3,500,000,000[148] 2020 Texas Instruments 16 nm ? ?
Apple A14 Bionic (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches) 11,800,000,000[149] 2020 Apple 5 nm 88 mm2 134,100,000
Apple M1 (octa-core 64-bit ARM64 SoC, SIMD, caches) 16,000,000,000[150] 2020 Apple 5 nm 119 mm2 134,500,000
HiSilicon Kirin 9000s 9,510,000,000[151] 2023 Huawei 7 nm 107 mm2 107,690,000
Huawei 15,300,000,000
[152][153]
2020 Huawei 5 nm 114 mm2 134,200,000
AMD Zen 3 CCX (core complex unit: 8 cores, 32 MB L3 cache) 4,080,000,000[154] 2020 AMD 7 nm 68 mm² 60,000,000
AMD Zen 3 CCD (core complex die) 4,150,000,000[154] 2020 AMD 7 nm 81 mm² 51,230,000
Core 11th gen Rocket Lake (8-core 64-bit, SIMD, large caches) 6,000,000,000+ [155] 2021 Intel 14 nm +++ 14 nm 276 mm2[156] 37,500,000 or 21,800,000+ [157]
AMD Ryzen 7 5800H (64-bit, SIMD, caches, I/O and GPU) 10,700,000,000[158] 2021 AMD 7 nm 180 mm2 59,440,000
AMD Epyc 7763 (Milan) (64-core, 64-bit) ? 2021 AMD 7 & 12 nm
(TSMC)
1,064 mm2
(8×81+416)[159]
?
Apple A15 15,000,000,000
[160][161]
2021 Apple 5 nm 107.68 mm2 139,300,000
Apple A17 19,000,000,000
[162]
2023 Apple 3 nm 103.8 mm² 183,044,315
Apple M1 Pro (10-core, 64-bit) 33,700,000,000[163] 2021 Apple 5 nm 245 mm2[164] 137,600,000
Apple M1 Max (10-core, 64-bit) 57,000,000,000
[165][163]
2021 Apple 5 nm 420.2 mm2[166] 135,600,000
Power10 dual-chip module (30 SMT8 cores or 60 SMT4 cores) 36,000,000,000[167] 2021 IBM 7 nm 1,204 mm2 29,900,000
Dimensity 9000 (ARM64 SoC) 15,300,000,000
[168][169]
2021 Mediatek 4 nm
(TSMC N4)
? ?
Apple M1 Ultra (dual-chip module, 2×10 cores) 114,000,000,000
[170][171]
2022 Apple 5 nm 840.5 mm2[166] 135,600,000
AMD Epyc 7773X (Milan-X) (multi-chip module, 64 cores, 768 MB L3 cache) 26,000,000,000 + Milan[172] 2022 AMD 7 & 12 nm
(TSMC)
1,352 mm2
(Milan + 8×36)[172]
?
IBM Telum dual-chip module (2×8 cores, 2×256 MB cache) 45,000,000,000
[173][174]
2022 IBM 7 nm (Samsung) 1,060 mm2 42,450,000
Apple M2 (deca-core 64-bit ARM64 SoC, SIMD, caches) 20,000,000,000[175] 2022 Apple 5 nm ? ?
Apple A16 (ARM64 SoC) 16,000,000,000
[176][177][178]
2022 Apple 4 nm ? ?
Dimensity 9200 (ARM64 SoC) 17,000,000,000
[179][180][181]
2022 Mediatek 4 nm
(TSMC N4P)
? ?
Qualcomm Snapdragon 8 Gen 2 (octa-core ARM64 "mobile SoC", SIMD, caches) 16,000,000,000 2022 Qualcomm 4 nm 268 mm2 59,701,492
AMD EPYC Genoa (4th gen/9004 series) 13-chip module (up to 96 cores and 384 MB (L3) + 96 MB (L2) cache)[182] 90,000,000,000
[183][184][185]
2022 AMD 5 nm (CCD)
6 nm (IOD)
1,263.34 mm²
12×72.225 (CCD)
396.64 (IOD)
[186][187]
71,240,000
Sapphire Rapids quad-chip module (up to 60 cores and 112.5 MB of cache)[188] 44,000,000,000–
48,000,000,000[189]
2023 Intel 10 nm ESF (Intel 7) 1,600 mm2 27,500,000–
30,000,000
Apple M2 Pro (12-core 64-bit ARM64 SoC, SIMD, caches) 40,000,000,000[190] 2023 Apple 5 nm ? ?
Apple M2 Max (12-core 64-bit ARM64 SoC, SIMD, caches) 67,000,000,000[190] 2023 Apple 5 nm ? ?
Apple M2 Ultra (two M2 Max dies) 134,000,000,000[7] 2023 Apple 5 nm ? ?
AMD EPYC Bergamo (4th gen/97X4 series) 9-chip module (up to 128 cores and 256 MB (L3) + 128 MB (L2) cache) 82,000,000,000[191] 2023 AMD 5 nm (CCD)
6 nm (IOD)
? ?
Processor Transistor count Year Designer Process
(nm)
Area (mm2) Transistor
density
(tr./mm2)

GPUs

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.

The designer refers to the technology company that designs the logic of the integrated circuit chip (such as Nvidia and AMD). The manufacturer ("Fab.") refers to the semiconductor company that fabricates the chip using its semiconductor manufacturing process at a foundry (such as TSMC and Samsung Semiconductor). The transistor count in a chip is dependent on a manufacturer's fabrication process, with smaller semiconductor nodes typically enabling higher transistor density and thus higher transistor counts.

The random-access memory (RAM) that comes with GPUs (such as VRAM, SGRAM or HBM) greatly increases the total transistor count, with the memory typically accounting for the majority of transistors in a graphics card. For example, Nvidia's Tesla P100 has 15 billion FinFETs (16 nm) in the GPU in addition to 16 GB of HBM2 memory, totaling about 150 billion MOSFETs on the graphics card.[192] The following table does not include the memory. For memory transistor counts, see the Memory section below.

Processor Transistor count Year Designer(s) Fab(s) Process Area Transistor
density
(tr./mm2)
Ref
µPD7220 GDC 40,000 1982 NEC NEC 5,000 nm ? ? [193]
ARTC HD63484 60,000 1984 Hitachi Hitachi ? ? ? [194]
CBM Agnus 21,000 1985 Commodore CSG 5,000 nm ? ? [195][196]
YM7101 VDP 100,000 1988 Yamaha, Sega Yamaha ? ? ? [197]
Tom & Jerry 750,000 1993 Flare IBM ? ? ? [197]
VDP1 1,000,000 1994 Sega Hitachi 500 nm ? ? [198][199]
Sony GPU 1,000,000 1994 Toshiba LSI 500 nm ? ? [200][201][202]
NV1 1,000,000 1995 Nvidia, Sega SGS 500 nm 90 mm2 11,000 [198]
Reality Coprocessor 2,600,000 1996 SGI NEC 350 nm 81 mm2 32,100 [203]
PowerVR 1,200,000 1996 VideoLogic NEC 350 nm ? ? [204]
Voodoo Graphics 1,000,000 1996 3dfx TSMC 500 nm ? ? [205][206]
Voodoo Rush 1,000,000 1997 3dfx TSMC 500 nm ? ? [205][206]
NV3 3,500,000 1997 Nvidia SGS, TSMC 350 nm 90 mm2 38,900 [207][208]
i740 3,500,000 1998 Intel, Real3D Real3D 350 nm ? ? [205][206]
Voodoo 2 4,000,000 1998 3dfx TSMC 350 nm ? ?
Voodoo Rush 4,000,000 1998 3dfx TSMC 350 nm ? ?
NV4 7,000,000 1998 Nvidia TSMC 350 nm 90 mm2 78,000 [205][208]
PowerVR2 CLX2 10,000,000 1998 VideoLogic NEC 250 nm 116 mm2 86,200 [209][210][211][212]
PowerVR2 PMX1 6,000,000 1999 VideoLogic NEC 250 nm ? ? [213]
Rage 128 8,000,000 1999 ATI TSMC, UMC 250 nm 70 mm2 114,000 [206]
Voodoo 3 8,100,000 1999 3dfx TSMC 250 nm ? ? [214]
Graphics Synthesizer 43,000,000 1999 Sony, Toshiba Sony, Toshiba 180 nm 279 mm2 154,000 [66][215][65][64]
NV5 15,000,000 1999 Nvidia TSMC 250 nm 90 mm2 167,000 [206]
NV10 17,000,000 1999 Nvidia TSMC 220 nm 111 mm2 153,000 [216][208]
NV11 20,000,000 2000 Nvidia TSMC 180 nm 65 mm2 308,000 [206]
NV15 25,000,000 2000 Nvidia TSMC 180 nm 81 mm2 309,000 [206]
Voodoo 4 14,000,000 2000 3dfx TSMC 220 nm ? ? [205][206]
Voodoo 5 28,000,000 2000 3dfx TSMC 220 nm ? ? [205][206]
R100 30,000,000 2000 ATI TSMC 180 nm 97 mm2 309,000 [206]
Flipper 51,000,000 2000 ArtX NEC 180 nm 106 mm2 481,000 [66][217]
PowerVR3 KYRO 14,000,000 2001 Imagination ST 250 nm ? ? [205][206]
PowerVR3 KYRO II 15,000,000 2001 Imagination ST 180 nm
NV2A 60,000,000 2001 Nvidia TSMC 150 nm ? ? [205][218]
NV20 57,000,000 2001 Nvidia TSMC 150 nm 128 mm2 445,000 [206]
NV25 63,000,000 2002 Nvidia TSMC 150 nm 142 mm2 444,000
NV28 36,000,000 2002 Nvidia TSMC 150 nm 101 mm2 356,000
NV17/18 29,000,000 2002 Nvidia TSMC 150 nm 65 mm2 446,000
R200 60,000,000 2001 ATI TSMC 150 nm 68 mm2 882,000
R300 107,000,000 2002 ATI TSMC 150 nm 218 mm2 490,800
R360 117,000,000 2003 ATI TSMC 150 nm 218 mm2 536,700
NV34 45,000,000 2003 Nvidia TSMC 150 nm 124 mm2 363,000
NV34b 45,000,000 2004 Nvidia TSMC 140 nm 91 mm2 495,000
NV30 125,000,000 2003 Nvidia TSMC 130 nm 199 mm2 628,000
NV31 80,000,000 2003 Nvidia TSMC 130 nm 121 mm2 661,000
NV35/38 135,000,000 2003 Nvidia TSMC 130 nm 207 mm2 652,000
NV36 82,000,000 2003 Nvidia IBM 130 nm 133 mm2 617,000
R480 160,000,000 2004 ATI TSMC 130 nm 297 mm2 538,700
NV40 222,000,000 2004 Nvidia IBM 130 nm 305 mm2 727,900
NV44 75,000,000 2004 Nvidia IBM 130 nm 110 mm2 681,800
NV41 222,000,000 2005 Nvidia TSMC 110 nm 225 mm2 986,700 [206]
NV42 198,000,000 2005 Nvidia TSMC 110 nm 222 mm2 891,900
NV43 146,000,000 2005 Nvidia TSMC 110 nm 154 mm2 948,100
G70 303,000,000 2005 Nvidia TSMC, Chartered 110 nm 333 mm2 909,900
Xenos 232,000,000 2005 ATI TSMC 90 nm 182 mm2 1,275,000 [219][220]
RSX Reality Synthesizer 300,000,000 2005 Nvidia, Sony Sony 90 nm 186 mm2 1,613,000 [221][222]
R520 321,000,000 2005 ATI TSMC 90 nm 288 mm2 1,115,000 [206]
RV530 157,000,000 2005 ATI TSMC 90 nm 150 mm2 1,047,000
RV515 107,000,000 2005 ATI TSMC 90 nm 100 mm2 1,070,000
R580 384,000,000 2006 ATI TSMC 90 nm 352 mm2 1,091,000
G71 278,000,000 2006 Nvidia TSMC 90 nm 196 mm2 1,418,000
G72 112,000,000 2006 Nvidia TSMC 90 nm 81 mm2 1,383,000
G73 177,000,000 2006 Nvidia TSMC 90 nm 125 mm2 1,416,000
G80 681,000,000 2006 Nvidia TSMC 90 nm 480 mm2 1,419,000
G86 Tesla 210,000,000 2007 Nvidia TSMC 80 nm 127 mm2 1,654,000
G84 Tesla 289,000,000 2007 Nvidia TSMC 80 nm 169 mm2 1,710,000
RV560 330,000,000 2006 ATI TSMC 80 nm 230 mm2 1,435,000
R600 700,000,000 2007 ATI TSMC 80 nm 420 mm2 1,667,000
RV610 180,000,000 2007 ATI TSMC 65 nm 85 mm2 2,118,000 [206]
RV630 390,000,000 2007 ATI TSMC 65 nm 153 mm2 2,549,000
G92 754,000,000 2007 Nvidia TSMC, UMC 65 nm 324 mm2 2,327,000
G94 Tesla 505,000,000 2008 Nvidia TSMC 65 nm 240 mm2 2,104,000
G96 Tesla 314,000,000 2008 Nvidia TSMC 65 nm 144 mm2 2,181,000
G98 Tesla 210,000,000 2008 Nvidia TSMC 65 nm 86 mm2 2,442,000
GT200[223] 1,400,000,000 2008 Nvidia TSMC 65 nm 576 mm2 2,431,000
RV620 181,000,000 2008 ATI TSMC 55 nm 67 mm2 2,701,000 [206]
RV635 378,000,000 2008 ATI TSMC 55 nm 135 mm2 2,800,000
RV710 242,000,000 2008 ATI TSMC 55 nm 73 mm2 3,315,000
RV730 514,000,000 2008 ATI TSMC 55 nm 146 mm2 3,521,000
RV670 666,000,000 2008 ATI TSMC 55 nm 192 mm2 3,469,000
RV770 956,000,000 2008 ATI TSMC 55 nm 256 mm2 3,734,000
RV790 959,000,000 2008 ATI TSMC 55 nm 282 mm2 3,401,000 [224][206]
G92b Tesla 754,000,000 2008 Nvidia TSMC, UMC 55 nm 260 mm2 2,900,000 [206]
G94b Tesla 505,000,000 2008 Nvidia TSMC, UMC 55 nm 196 mm2 2,577,000
G96b Tesla 314,000,000 2008 Nvidia TSMC, UMC 55 nm 121 mm2 2,595,000
GT200b Tesla 1,400,000,000 2008 Nvidia TSMC, UMC 55 nm 470 mm2 2,979,000
GT218 Tesla 260,000,000 2009 Nvidia TSMC 40 nm 57 mm2 4,561,000 [206]
GT216 Tesla 486,000,000 2009 Nvidia TSMC 40 nm 100 mm2 4,860,000
GT215 Tesla 727,000,000 2009 Nvidia TSMC 40 nm 144 mm2 5,049,000
RV740 826,000,000 2009 ATI TSMC 40 nm 137 mm2 6,029,000
Cypress RV870 2,154,000,000 2009 ATI TSMC 40 nm 334 mm2 6,449,000
Juniper RV840 1,040,000,000 2009 ATI TSMC 40 nm 166 mm2 6,265,000
Redwood RV830 627,000,000 2010 AMD (ATI) TSMC 40 nm 104 mm2 6,029,000 [206]
Cedar RV810 292,000,000 2010 AMD TSMC 40 nm 59 mm2 4,949,000
Cayman RV970 2,640,000,000 2010 AMD TSMC 40 nm 389 mm2 6,789,000
Barts RV940 1,700,000,000 2010 AMD TSMC 40 nm 255 mm2 6,667,000
Turks RV930 716,000,000 2011 AMD TSMC 40 nm 118 mm2 6,068,000
Caicos RV910 370,000,000 2011 AMD TSMC 40 nm 67 mm2 5,522,000
GF100 Fermi 3,200,000,000 2010 Nvidia TSMC 40 nm 526 mm2 6,084,000 [225]
GF110 Fermi 3,000,000,000 2010 Nvidia TSMC 40 nm 520 mm2 5,769,000 [225]
GF104 Fermi 1,950,000,000 2011 Nvidia TSMC 40 nm 332 mm2 5,873,000 [206]
GF106 Fermi 1,170,000,000 2010 Nvidia TSMC 40 nm 238 mm2 4,916,000 [206]
GF108 Fermi 585,000,000 2011 Nvidia TSMC 40 nm 116 mm2 5,043,000 [206]
GF119 Fermi 292,000,000 2011 Nvidia TSMC 40 nm 79 mm2 3,696,000 [206]
Tahiti GCN1 4,312,711,873 2011 AMD TSMC 28 nm 365 mm2 11,820,000 [226]
Cape Verde GCN1 1,500,000,000 2012 AMD TSMC 28 nm 123 mm2 12,200,000 [206]
Pitcairn GCN1 2,800,000,000 2012 AMD TSMC 28 nm 212 mm2 13,210,000 [206]
GK110 Kepler 7,080,000,000 2012 Nvidia TSMC 28 nm 561 mm2 12,620,000 [227][228]
GK104 Kepler 3,540,000,000 2012 Nvidia TSMC 28 nm 294 mm2 12,040,000 [229]
GK106 Kepler 2,540,000,000 2012 Nvidia TSMC 28 nm 221 mm2 11,490,000 [206]
GK107 Kepler 1,270,000,000 2012 Nvidia TSMC 28 nm 118 mm2 10,760,000 [206]
GK208 Kepler 1,020,000,000 2013 Nvidia TSMC 28 nm 79 mm2 12,910,000 [206]
Oland GCN1 1,040,000,000 2013 AMD TSMC 28 nm 90 mm2 11,560,000 [206]
Bonaire GCN2 2,080,000,000 2013 AMD TSMC 28 nm 160 mm2 13,000,000
Durango (Xbox One) 4,800,000,000 2013 AMD TSMC 28 nm 375 mm2 12,800,000 [230][231]
Liverpool (PlayStation 4) ? 2013 AMD TSMC 28 nm 348 mm2 ? [232]
Hawaii GCN2 6,300,000,000 2013 AMD TSMC 28 nm 438 mm2 14,380,000 [206]
GM200 Maxwell 8,000,000,000 2015 Nvidia TSMC 28 nm 601 mm2 13,310,000
GM204 Maxwell 5,200,000,000 2014 Nvidia TSMC 28 nm 398 mm2 13,070,000
GM206 Maxwell 2,940,000,000 2014 Nvidia TSMC 28 nm 228 mm2 12,890,000
GM107 Maxwell 1,870,000,000 2014 Nvidia TSMC 28 nm 148 mm2 12,640,000
Tonga GCN3 5,000,000,000 2014 AMD TSMC, GlobalFoundries 28 nm 366 mm2 13,660,000
Fiji GCN3 8,900,000,000 2015 AMD TSMC 28 nm 596 mm2 14,930,000
Durango 2 (Xbox One S) 5,000,000,000 2016 AMD TSMC 16 nm 240 mm2 20,830,000 [233]
Neo (PlayStation 4 Pro) 5,700,000,000 2016 AMD TSMC 16 nm 325 mm2 17,540,000 [234]
Ellesmere/Polaris 10 GCN4 5,700,000,000 2016 AMD Samsung, GlobalFoundries 14 nm 232 mm2 24,570,000 [235]
Baffin/Polaris 11 GCN4 3,000,000,000 2016 AMD Samsung, GlobalFoundries 14 nm 123 mm2 24,390,000 [206][236]
Lexa/Polaris 12 GCN4 2,200,000,000 2017 AMD Samsung, GlobalFoundries 14 nm 101 mm2 21,780,000 [206][236]
GP100 Pascal 15,300,000,000 2016 Nvidia TSMC, Samsung 16 nm 610 mm2 25,080,000 [237][238]
GP102 Pascal 11,800,000,000 2016 Nvidia TSMC, Samsung 16 nm 471 mm2 25,050,000 [206][238]
GP104 Pascal 7,200,000,000 2016 Nvidia TSMC 16 nm 314 mm2 22,930,000 [206][238]
GP106 Pascal 4,400,000,000 2016 Nvidia TSMC 16 nm 200 mm2 22,000,000 [206][238]
GP107 Pascal 3,300,000,000 2016 Nvidia Samsung 14 nm 132 mm2 25,000,000 [206][238]
GP108 Pascal 1,850,000,000 2017 Nvidia Samsung 14 nm 74 mm2 25,000,000 [206][238]
Scorpio (Xbox One X) 6,600,000,000 2017 AMD TSMC 16 nm 367 mm2 17,980,000 [230][239]
Vega 10 GCN5 12,500,000,000 2017 AMD Samsung, GlobalFoundries 14 nm 484 mm2 25,830,000 [240]
GV100 Volta 21,100,000,000 2017 Nvidia TSMC 12 nm 815 mm2 25,890,000 [241]
TU102 Turing 18,600,000,000 2018 Nvidia TSMC 12 nm 754 mm2 24,670,000 [242]
TU104 Turing 13,600,000,000 2018 Nvidia TSMC 12 nm 545 mm2 24,950,000
TU106 Turing 10,800,000,000 2018 Nvidia TSMC 12 nm 445 mm2 24,270,000
TU116 Turing 6,600,000,000 2019 Nvidia TSMC 12 nm 284 mm2 23,240,000 [243]
TU117 Turing 4,700,000,000 2019 Nvidia TSMC 12 nm 200 mm2 23,500,000 [244]
Vega 20 GCN5 13,230,000,000 2018 AMD TSMC 7 nm 331 mm2 39,970,000 [206]
Navi 10 RDNA1 10,300,000,000 2019 AMD TSMC 7 nm 251 mm2 41,040,000 [245]
Navi 12 RDNA1 ? 2020 AMD TSMC 7 nm ? ?
Navi 14 RDNA1 6,400,000,000 2019 AMD TSMC 7 nm 158 mm2 40,510,000 [246]
Arcturus CDNA1 25,600,000,000 2020 AMD TSMC 7 nm 750 mm2 34,100,000 [247]
GA100 Ampere 54,200,000,000 2020 Nvidia TSMC 7 nm 826 mm2 65,620,000 [248][249]
GA102 Ampere 28,300,000,000 2020 Nvidia Samsung 8 nm 628 mm2 45,035,000 [250][251]
GA103 Ampere 22,000,000,000 2022 Nvidia Samsung 8 nm 496 mm² 44,400,000 [252]
GA104 Ampere 17,400,000,000 2020 Nvidia Samsung 8 nm 392 mm² 44,390,000 [253]
GA106 Ampere 12,000,000,000 2021 Nvidia Samsung 8 nm 276 mm² 43,480,000 [254]
GA107 Ampere 8,700,000,000 2021 Nvidia Samsung 8 nm 200 mm² 43,500,000 [255]
Navi 21 RDNA2 26,800,000,000 2020 AMD TSMC 7 nm 520 mm² 51,540,000
Navi 22 RDNA2 17,200,000,000 2021 AMD TSMC 7 nm 335 mm² 51,340,000
Navi 23 RDNA2 11,060,000,000 2021 AMD TSMC 7 nm 237 mm² 46,670,000
Navi 24 RDNA2 5,400,000,000 2022 AMD TSMC 6 nm 107 mm² 50,470,000
Aldebaran CDNA2 58,200,000,000 2021 AMD TSMC 6 nm 1448–
–1474 mm²[256]
1480 mm²[257]
1490–
–1580 mm²[258]
39,500,000–
–40,200,000
39,300,000
36,800,000–
–39,100,000
[259]
GH100 Hopper 80,000,000,000 2022 Nvidia TSMC 4 nm 814 mm² 98,280,000 [260]
AD102 Ada Lovelace 76,300,000,000 2022 Nvidia TSMC 4 nm 608.4 mm² 125,411,000 [261]
AD103 Ada Lovelace 45,900,000,000 2022 Nvidia TSMC 4 nm 378.6 mm² 121,240,000 [262]
AD104 Ada Lovelace 35,800,000,000 2022 Nvidia TSMC 4 nm 294.5 mm² 121,560,000 [262]
AD106 Ada Lovelace ? 2023 Nvidia TSMC 4 nm 190 mm² ? [263][264]
AD107 Ada Lovelace ? 2023 Nvidia TSMC 4 nm 146 mm² ? [263][265]
Navi 31 RDNA3 58,000,000,000 2022 AMD TSMC 5 nm (GCD) 6 nm (MCD) 531 mm² (MCM)
306 mm² (GCD)
6×37.5 mm² (MCD)
109,200,000 (MCM)
132,400,000 (GCD)
[266][267]
Navi 33 RDNA3 13,300,000,000 2023 AMD TSMC 6 nm 204 mm² 65,200,000 [268]
MI300X 153,000,000,000 2023 AMD TSMC 5 nm ? ? [269]
Processor Transistor count Year Designer(s) Fab(s) MOS process Area Transistor
density
(tr./mm2)
Ref

FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing.

FPGA Transistor count Date of introduction Designer Manufacturer Process Area Transistor density, tr./mm2 Ref
Virtex 70,000,000 1997 Xilinx
Virtex-E 200,000,000 1998 Xilinx
Virtex-II 350,000,000 2000 Xilinx 130 nm
Virtex-II PRO 430,000,000 2002 Xilinx
Virtex-4 1,000,000,000 2004 Xilinx 90 nm
Virtex-5 1,100,000,000 2006 Xilinx TSMC 65 nm [270]
Stratix IV 2,500,000,000 2008 Altera TSMC 40 nm [271]
Stratix V 3,800,000,000 2011 Altera TSMC 28 nm [272]
Arria 10 5,300,000,000 2014 Altera TSMC 20 nm [273]
Virtex-7 2000T 6,800,000,000 2011 Xilinx TSMC 28 nm [274]
Stratix 10 SX 2800 17,000,000,000 TBD Intel Intel 14 nm 560 mm2 30,400,000 [275][276]
Virtex-Ultrascale VU440 20,000,000,000 Q1 2015 Xilinx TSMC 20 nm [277][278]
Virtex-Ultrascale+ VU19P 35,000,000,000 2020 Xilinx TSMC 16 nm 900 mm2 [lower-alpha 6] 38,900,000 [279][280][281]
Versal VC1902 37,000,000,000 2H 2019 Xilinx TSMC 7 nm [282][283][284]
Stratix 10 GX 10M 43,300,000,000 Q4 2019 Intel Intel 14 nm 1,400 mm2 [lower-alpha 6] 30,930,000 [285][286]
Versal VP1802 92,000,000,000 2021 ?[lower-alpha 7] Xilinx TSMC 7 nm [287][288]

Memory

Semiconductor memory is an electronic data storage device, often used as computer memory, implemented on integrated circuits. Nearly all semiconductor memories since the 1970s have used MOSFETs (MOS transistors), replacing earlier bipolar junction transistors. There are two major types of semiconductor memory: random-access memory (RAM) and non-volatile memory (NVM). In turn, there are two major RAM types: dynamic random-access memory (DRAM) and static random-access memory (SRAM), as well as two major NVM types: flash memory and read-only memory (ROM).

Typical CMOS SRAM consists of six transistors per cell. For DRAM, 1T1C, which means one transistor and one capacitor structure, is common. Capacitor charged or not is used to store 1 or 0. In flash memory, the data is stored in floating gates, and the resistance of the transistor is sensed to interpret the data stored. Depending on how fine scale the resistance could be separated, one transistor could store up to three bits, meaning eight distinctive levels of resistance possible per transistor. However, a finer scale comes with the cost of repeatability issues, and hence reliability. Typically, low grade 2-bits MLC flash is used for flash drives, so a 16 GB flash drive contains roughly 64 billion transistors.

For SRAM chips, six-transistor cells (six transistors per bit) was the standard.[289] DRAM chips during the early 1970s had three-transistor cells (three transistors per bit), before single-transistor cells (one transistor per bit) became standard since the era of 4 Kb DRAM in the mid-1970s.[290][291] In single-level flash memory, each cell contains one floating-gate MOSFET (one transistor per bit),[292] whereas multi-level flash contains 2, 3 or 4 bits per transistor.

Flash memory chips are commonly stacked up in layers, up to 128-layer in production,[293] and 136-layer managed,[294] and available in end-user devices up to 69-layer from manufacturers.

Random-access memory (RAM)
Chip name Capacity (bits) RAM type Transistor count Date of introduction Manufacturer(s) Process Area Transistor
density
(tr./mm2)
Ref
1-bit SRAM (cell) 6 1963 Fairchild ? [295]
1-bit DRAM (cell) 1 1965 Toshiba ? [296][297]
? 8-bit SRAM (bipolar) 48 1965 SDS, Signetics ? ? ? [295]
SP95 16-bit SRAM (bipolar) 80 1965 IBM ? ? ? [298]
TMC3162 16-bit SRAM (TTL) 96 1966 Transitron ? ? [291]
? ? SRAM (MOS) ? 1966 NEC ? ? ? [290]
256-bit DRAM (IC) 256 1968 Fairchild ? ? ? [291]
64-bit SRAM (PMOS) 384 1968 Fairchild ? ? ? [290]
144-bit SRAM (NMOS) 864 1968 NEC
1101 256-bit SRAM (PMOS) 1,536 1969 Intel 12,000 nm ? ? [299][300][301]
1102 1 Kb DRAM (PMOS) 3,072 1970 Intel, Honeywell ? ? ? [290]
1103 1 Kb DRAM (PMOS) 3,072 1970 Intel 8,000 nm 10 mm2 307 [302][289][303][291]
μPD403 1 Kb DRAM (NMOS) 3,072 1971 NEC ? ? ? [304]
? 2 Kb DRAM (PMOS) 6,144 1971 General Instrument ? 12.7 mm2 484 [305]
2102 1 Kb SRAM (NMOS) 6,144 1972 Intel ? ? ? [299][306]
? 8 Kb DRAM (PMOS) 8,192 1973 IBM ? 18.8 mm2 436 [305]
5101 1 Kb SRAM (CMOS) 6,144 1974 Intel ? ? ? [299]
2116 16 Kb DRAM (NMOS) 16,384 1975 Intel ? ? ? [307][291]
2114 4 Kb SRAM (NMOS) 24,576 1976 Intel ? ? ? [299][308]
? 4 Kb SRAM (CMOS) 24,576 1977 Toshiba ? ? ? [300]
64 Kb DRAM (NMOS) 65,536 1977 NTT ? 35.4 mm2 1851 [305]
DRAM (VMOS) 65,536 1979 Siemens ? 25.2 mm2 2601 [305]
16 Kb SRAM (CMOS) 98,304 1980 Hitachi, Toshiba ? ? ? [309]
256 Kb DRAM (NMOS) 262,144 1980 NEC 1,500 nm 41.6 mm2 6302 [305]
NTT 1,000 nm 34.4 mm2 7620 [305]
64 Kb SRAM (CMOS) 393,216 1980 Matsushita ? ? ? [309]
288 Kb DRAM 294,912 1981 IBM ? 25 mm2 11,800 [310]
64 Kb SRAM (NMOS) 393,216 1982 Intel 1,500 nm ? ? [309]
256 Kb SRAM (CMOS) 1,572,864 1984 Toshiba 1,200 nm ? ? [309][301]
8 Mb DRAM 8,388,608 January 5, 1984 Hitachi ? ? ? [311][312]
16 Mb DRAM (CMOS) 16,777,216 1987 NTT 700 nm 148 mm2 113,400 [305]
4 Mb SRAM (CMOS) 25,165,824 1990 NEC, Toshiba, Hitachi, Mitsubishi ? ? ? [309]
64 Mb DRAM (CMOS) 67,108,864 1991 Matsushita, Mitsubishi, Fujitsu, Toshiba 400 nm
KM48SL2000 16 Mb SDRAM 16,777,216 1992 Samsung ? ? ? [313][314]
? 16 Mb SRAM (CMOS) 100,663,296 1992 Fujitsu, NEC 400 nm ? ? [309]
256 Mb DRAM (CMOS) 268,435,456 1993 Hitachi, NEC 250 nm
1 Gb DRAM 1,073,741,824 January 9, 1995 NEC 250 nm ? ? [315][316]
Hitachi 160 nm ? ?
SDRAM 1,073,741,824 1996 Mitsubishi 150 nm ? ? [309]
SDRAM (SOI) 1,073,741,824 1997 Hyundai ? ? ? [317]
4 Gb DRAM (4-bit) 1,073,741,824 1997 NEC 150 nm ? ? [309]
DRAM 4,294,967,296 1998 Hyundai ? ? ? [317]
8 Gb SDRAM (DDR3) 8,589,934,592 April 2008 Samsung 50 nm ? ? [318]
16 Gb SDRAM (DDR3) 17,179,869,184 2008
32 Gb SDRAM (HBM2) 34,359,738,368 2016 Samsung 20 nm ? ? [319]
64 Gb SDRAM (HBM2) 68,719,476,736 2017
128 Gb SDRAM (DDR4) 137,438,953,472 2018 Samsung 10 nm ? ? [320]
? RRAM[321] (3DSoC)[322] ? 2019 SkyWater Technology[323] 90 nm ? ?
Flash memory
Chip name Capacity (bits) Flash type FGMOS transistor count Date of introduction Manufacturer(s) Process Area Transistor
density
(tr./mm2)
Ref
? 256 Kb NOR 262,144 1985 Toshiba 2,000 nm ? ? [309]
1 Mb NOR 1,048,576 1989 Seeq, Intel ?
4 Mb NAND 4,194,304 1989 Toshiba 1,000 nm
16 Mb NOR 16,777,216 1991 Mitsubishi 600 nm
DD28F032SA 32 Mb NOR 33,554,432 1993 Intel ? 280 mm2 120,000 [299][324]
? 64 Mb NOR 67,108,864 1994 NEC 400 nm ? ? [309]
NAND 67,108,864 1996 Hitachi
128 Mb NAND 134,217,728 1996 Samsung, Hitachi ?
256 Mb NAND 268,435,456 1999 Hitachi, Toshiba 250 nm
512 Mb NAND 536,870,912 2000 Toshiba ? ? ? [325]
1 Gb 2-bit NAND 536,870,912 2001 Samsung ? ? ? [309]
Toshiba, SanDisk 160 nm ? ? [326]
2 Gb NAND 2,147,483,648 2002 Samsung, Toshiba ? ? ? [327][328]
8 Gb NAND 8,589,934,592 2004 Samsung 60 nm ? ? [327]
16 Gb NAND 17,179,869,184 2005 Samsung 50 nm ? ? [329]
32 Gb NAND 34,359,738,368 2006 Samsung 40 nm
THGAM 128 Gb Stacked NAND 128,000,000,000 April 2007 Toshiba 56 nm 252 mm2 507,900,000 [330]
THGBM 256 Gb Stacked NAND 256,000,000,000 2008 Toshiba 43 nm 353 mm2 725,200,000 [331]
THGBM2 1 Tb Stacked 4-bit NAND 256,000,000,000 2010 Toshiba 32 nm 374 mm2 684,500,000 [332]
KLMCG8GE4A 512 Gb Stacked 2-bit NAND 256,000,000,000 2011 Samsung ? 192 mm2 1,333,000,000 [333]
KLUFG8R1EM 4 Tb Stacked 3-bit V-NAND 1,365,333,333,504 2017 Samsung ? 150 mm2 9,102,000,000 [334]
eUFS (1 TB) 8 Tb Stacked 4-bit V-NAND 2,048,000,000,000 2019 Samsung ? 150 mm2 13,650,000,000 [335][336]
? 1 Tb 232L TLC NAND die 333,333,333,333 2022 Micron ? 68.5 mm2
(memory array)
4,870,000,000
(14.6 Gbit/mm2)
[337][338]

[339][340]

? 16 Tb 232L package 5,333,333,333,333 2022 Micron ? 68.5 mm2
(memory array)
77,900,000,000
(16×14.6 Gbit/mm2)
Read-only memory (ROM)
Chip name Capacity (bits) ROM type Transistor count Date of introduction Manufacturer(s) Process Area Ref
? ? PROM ? 1956 Arma ? [341][342]
1 Kb ROM (MOS) 1,024 1965 General Microelectronics ? ? [343]
3301 1 Kb ROM (bipolar) 1,024 1969 Intel ? [343]
1702 2 Kb EPROM (MOS) 2,048 1971 Intel ? 15 mm2 [344]
? 4 Kb ROM (MOS) 4,096 1974 AMD, General Instrument ? ? [343]
2708 8 Kb EPROM (MOS) 8,192 1975 Intel ? ? [299]
? 2 Kb EEPROM (MOS) 2,048 1976 Toshiba ? ? [345]
µCOM-43 ROM 16 Kb PROM (PMOS) 16,000 1977 NEC ? ? [346]
2716 16 Kb EPROM (TTL) 16,384 1977 Intel ? [302][347]
EA8316F 16 Kb ROM (NMOS) 16,384 1978 Electronic Arrays ? 436 mm2 [343][348]
2732 32 Kb EPROM 32,768 1978 Intel ? ? [299]
2364 64 Kb ROM 65,536 1978 Intel ? ? [349]
2764 64 Kb EPROM 65,536 1981 Intel 3,500 nm ? [299][309]
27128 128 Kb EPROM 131,072 1982 Intel ?
27256 256 Kb EPROM (HMOS) 262,144 1983 Intel ? ? [299][350]
? 256 Kb EPROM (CMOS) 262,144 1983 Fujitsu ? ? [351]
512 Kb EPROM (NMOS) 524,288 1984 AMD 1,700 nm ? [309]
27512 512 Kb EPROM (HMOS) 524,288 1984 Intel ? ? [299][352]
? 1 Mb EPROM (CMOS) 1,048,576 1984 NEC 1,200 nm ? [309]
4 Mb EPROM (CMOS) 4,194,304 1987 Toshiba 800 nm
16 Mb EPROM (CMOS) 16,777,216 1990 NEC 600 nm
MROM 16,777,216 1995 AKM, Hitachi ? ? [316]

Transistor computers

Before transistors were invented, relays were used in commercial tabulating machines and experimental early computers. The world's first working programmable, fully automatic digital computer,[353] the 1941 Z3 22-bit word length computer, had 2,600 relays, and operated at a clock frequency of about 4–5 Hz. The 1940 Complex Number Computer had fewer than 500 relays,[354] but it was not fully programmable. The earliest practical computers used vacuum tubes and solid-state diode logic. ENIAC had 18,000 vacuum tubes, 7,200 crystal diodes, and 1,500 relays, with many of the vacuum tubes containing two triode elements.

The second generation of computers were transistor computers that featured boards filled with discrete transistors, solid-state diodes and magnetic memory cores. The experimental 1953 48-bit Transistor Computer, developed at the University of Manchester, is widely believed to be the first transistor computer to come into operation anywhere in the world (the prototype had 92 point-contact transistors and 550 diodes).[355] A later version the 1955 machine had a total of 250 junction transistors and 1,300 point-contact diodes. The Computer also used a small number of tubes in its clock generator, so it was not the first fully transistorized. The ETL Mark III, developed at the Electrotechnical Laboratory in 1956, may have been the first transistor-based electronic computer using the stored program method. It had about "130 point-contact transistors and about 1,800 germanium diodes were used for logic elements, and these were housed on 300 plug-in packages which could be slipped in and out."[356] The 1958 decimal architecture IBM 7070 was the first transistor computer to be fully programmable. It had about 30,000 alloy-junction germanium transistors and 22,000 germanium diodes, on approximately 14,000 Standard Modular System (SMS) cards. The 1959 MOBIDIC, short for "MOBIle DIgital Computer", at 12,000 pounds (6.0 short tons) mounted in the trailer of a semi-trailer truck, was a transistorized computer for battlefield data.

The third generation of computers used integrated circuits (ICs).[357] The 1962 15-bit Apollo Guidance Computer used "about 4,000 "Type-G" (3-input NOR gate) circuits" for about 12,000 transistors plus 32,000 resistors.[358] The IBM System/360, introduced 1964, used discrete transistors in hybrid circuit packs.[357] The 1965 12-bit PDP-8 CPU had 1409 discrete transistors and over 10,000 diodes, on many cards. Later versions, starting with the 1968 PDP-8/I, used integrated circuits. The PDP-8 was later reimplemented as a microprocessor as the Intersil 6100, see below.[359]

The next generation of computers were the microcomputers, starting with the 1971 Intel 4004, which used MOS transistors. These were used in home computers or personal computers (PCs).

This list includes early transistorized computers (second generation) and IC-based computers (third generation) from the 1950s and 1960s.

Computer Transistor count Year Manufacturer Notes Ref
Transistor Computer 92 1953 University of Manchester Point-contact transistors, 550 diodes. Lacked stored program capability. [355]
TRADIC 700 1954 Bell Labs Point-contact transistors [355]
Transistor Computer (full size) 250 1955 University of Manchester Discrete point-contact transistors, 1,300 diodes [355]
IBM 608 3,000 1955 IBM Germanium transistors [360]
ETL Mark III 130 1956 Electrotechnical Laboratory Point-contact transistors, 1,800 diodes, stored program capability [355][356]
Metrovick 950 200 1956 Metropolitan-Vickers Discrete junction transistors
NEC NEAC-2201 600 1958 NEC Germanium transistors [361]
Hitachi MARS-1 1,000 1958 Hitachi [362]
IBM 7070 30,000 1958 IBM Alloy-junction germanium transistors, 22,000 diodes [363]
Matsushita MADIC-I 400 1959 Matsushita Bipolar transistors [364]
NEC NEAC-2203 2,579 1959 NEC [365]
Toshiba TOSBAC-2100 5,000 1959 Toshiba [366]
IBM 7090 50,000 1959 IBM Discrete germanium transistors [367]
PDP-1 2,700 1959 Digital Equipment Corporation Discrete transistors
Olivetti Elea 9003  ? 1959 Olivetti 300,000 (?) discrete transistors and diodes [368]
Mitsubishi MELCOM 1101 3,500 1960 Mitsubishi Germanium transistors [369]
M18 FADAC 1,600 1960 Autonetics Discrete transistors
CPU of IBM 7030 Stretch 169,100 1961 IBM World's fastest computer from 1961 to 1964 [370]
D-17B 1,521 1962 Autonetics Discrete transistors
NEC NEAC-L2 16,000 1964 NEC Ge transistors [371]
CDC 6600 (entire computer) 400,000 1964 Control Data Corporation World's fastest computer from 1964 to 1969 [372]
IBM System/360 ? 1964 IBM Hybrid circuits
PDP-8 "Straight-8" 1,409[359] 1965 Digital Equipment Corporation discrete transistors, 10,000 diodes
PDP-8/S 1,001[373][374][375] 1966 Digital Equipment Corporation discrete transistors, diodes
PDP-8/I 1,409 1968[376] Digital Equipment Corporation 74 series TTL circuits[377]
Apollo Guidance Computer Block I 12,300 1966 Raytheon / MIT Instrumentation Laboratory 4,100 ICs, each containing a 3-transistor, 3-input NOR gate. (Block II had 2,800 dual 3-input NOR gates ICs.)

Logic functions

Transistor count for generic logic functions is based on static CMOS implementation.[378]

Function Transistor count Ref
NOT 2
Buffer 4
NAND 2-input 4
NOR 2-input 4
AND 2-input 6
OR 2-input 6
NAND 3-input 6
NOR 3-input 6
XOR 2-input 6
XNOR 2-input 8
MUX 2-input with TG 6
MUX 4-input with TG 18
NOT MUX 2-input 8
MUX 4-input 24
1-bit full adder 24
1-bit adder–subtractor 48
AND-OR-INVERT 6 [379]
Latch, D gated 8
Flip-flop, edge triggered dynamic D with reset 12
8-bit multiplier 3,000
16-bit multiplier 9,000
32-bit multiplier 21,000
small-scale integration 2–100 [380]
medium-scale integration 100–500 [380]
large-scale integration 500–20,000 [380]
very-large-scale integration 20,000–1,000,000 [380]
ultra-large scale integration >1,000,000

Parallel systems

Historically, each processing element in earlier parallel systems—like all CPUs of that time—was a serial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later each multi-core processor chip could contain more processing elements.[381]

Goodyear MPP: (1983?) 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.[381]

Brunel University Scape (single-chip array-processing element): (1983) 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.[381]

Cell Broadband Engine: (2006) with 9 cores per chip, had 234 million transistors per chip.[382]

Other devices

Device type Device name Transistor count Date of introduction Designer(s) Manufacturer(s) MOS process Area Transistor density, tr./mm2 Ref
Deep learning engine / IPU[lower-alpha 8] Colossus GC2 23,600,000,000 2018 Graphcore TSMC 16 nm ~800 mm2 29,500,000 [383][384][385]
Deep learning engine / IPU Wafer Scale Engine 1,200,000,000,000 2019 Cerebras TSMC 16 nm 46,225 mm2 25,960,000 [2][3][4][5]
Deep learning engine / IPU Wafer Scale Engine 2 2,600,000,000,000 2020 Cerebras TSMC 7 nm 46,225 mm2 56,250,000 [6][386][387]
Network switch NVLink4 NVSwitch 25,100,000,000 2022 Nvidia TSMC N4 (4 nm) 294 mm2 85,370,000 [388]

Transistor density

The transistor density is the number of transistors that are fabricated per unit area, typically measured in terms of the number of transistors per square millimeter (mm2). The transistor density usually correlates with the gate length of a semiconductor node (also known as a semiconductor manufacturing process), typically measured in nanometers (nm). As of 2019, the semiconductor node with the highest transistor density is TSMC's 5 nanometer node, with 171.3 million transistors per square millimeter (note this corresponds to a transistor-transistor spacing of 76.4 nm, far greater than the relative meaningless "5nm")[389]

MOSFET nodes

Semiconductor nodes
Node name Transistor density (transistors/mm2) Production year Process MOSFET Manufacturer(s) Ref
? ? 1960 20,000 nm PMOS Bell Labs [390][391]
? ? 1960 20,000 nm NMOS
? ? 1963 ? CMOS Fairchild [392]
? ? 1964 ? PMOS General Microelectronics [393]
? ? 1968 20,000 nm CMOS RCA [394]
? ? 1969 12,000 nm PMOS Intel [309][301]
? ? 1970 10,000 nm CMOS RCA [394]
? 300 1970 8,000 nm PMOS Intel [303][291]
? ? 1971 10,000 nm PMOS Intel [395]
? 480 1971 ? PMOS General Instrument [305]
? ? 1973 ? NMOS Texas Instruments [305]
? 220 1973 ? NMOS Mostek [305]
? ? 1973 7,500 nm NMOS NEC [20][19]
? ? 1973 6,000 nm PMOS Toshiba [21][396]
? ? 1976 5,000 nm NMOS Hitachi, Intel [305]
? ? 1976 5,000 nm CMOS RCA
? ? 1976 4,000 nm NMOS Zilog
? ? 1976 3,000 nm NMOS Intel [397]
? 1,850 1977 ? NMOS NTT [305]
? ? 1978 3,000 nm CMOS Hitachi [398]
? ? 1978 2,500 nm NMOS Texas Instruments [305]
? ? 1978 2,000 nm NMOS NEC, NTT
? 2,600 1979 ? VMOS Siemens
? 7,280 1979 1,000 nm NMOS NTT
? 7,620 1980 1,000 nm NMOS NTT
? ? 1983 2,000 nm CMOS Toshiba [309]
? ? 1983 1,500 nm CMOS Intel [305]
? ? 1983 1,200 nm CMOS Intel
? ? 1984 800 nm CMOS NTT
? ? 1987 700 nm CMOS Fujitsu
? ? 1989 600 nm CMOS Mitsubishi, NEC, Toshiba [309]
? ? 1989 500 nm CMOS Hitachi, Mitsubishi, NEC, Toshiba
? ? 1991 400 nm CMOS Matsushita, Mitsubishi, Fujitsu, Toshiba
? ? 1993 350 nm CMOS Sony
? ? 1993 250 nm CMOS Hitachi, NEC
3LM 32,000 1994 350 nm CMOS NEC [203]
? ? 1995 160 nm CMOS Hitachi [309]
? ? 1996 150 nm CMOS Mitsubishi
TSMC 180 nm ? 1998 180 nm CMOS TSMC [399]
CS80 ? 1999 180 nm CMOS Fujitsu [400]
? ? 1999 180 nm CMOS Intel, Sony, Toshiba [299][215]
CS85 ? 1999 170 nm CMOS Fujitsu [401]
Samsung 140 nm ? 1999 140 nm CMOS Samsung [309]
? ? 2001 130 nm CMOS Fujitsu, Intel [400][299]
Samsung 100 nm ? 2001 100 nm CMOS Samsung [309]
? ? 2002 90 nm CMOS Sony, Toshiba, Samsung [215][327]
CS100 ? 2003 90 nm CMOS Fujitsu [400]
Intel 90 nm 1,450,000 2004 90 nm CMOS Intel [402][299]
Samsung 80 nm ? 2004 80 nm CMOS Samsung [403]
? ? 2004 65 nm CMOS Fujitsu, Toshiba [404]
Samsung 60 nm ? 2004 60 nm CMOS Samsung [327]
TSMC 45 nm ? 2004 45 nm CMOS TSMC
Elpida 90 nm ? 2005 90 nm CMOS Elpida Memory [405]
CS200 ? 2005 65 nm CMOS Fujitsu [406][400]
Samsung 50 nm ? 2005 50 nm CMOS Samsung [329]
Intel 65 nm 2,080,000 2006 65 nm CMOS Intel [402]
Samsung 40 nm ? 2006 40 nm CMOS Samsung [329]
Toshiba 56 nm ? 2007 56 nm CMOS Toshiba [330]
Matsushita 45 nm ? 2007 45 nm CMOS Matsushita [82]
Intel 45 nm 3,300,000 2008 45 nm CMOS Intel [407]
Toshiba 43 nm ? 2008 43 nm CMOS Toshiba [331]
TSMC 40 nm ? 2008 40 nm CMOS TSMC [408]
Toshiba 32 nm ? 2009 32 nm CMOS Toshiba [409]
Intel 32 nm 7,500,000 2010 32 nm CMOS Intel [407]
? ? 2010 20 nm CMOS Hynix, Samsung [410][329]
Intel 22 nm 15,300,000 2012 22 nm CMOS Intel [407]
IMFT 20 nm ? 2012 20 nm CMOS IMFT [411]
Toshiba 19 nm ? 2012 19 nm CMOS Toshiba
Hynix 16 nm ? 2013 16 nm FinFET SK Hynix [410]
TSMC 16 nm 28,880,000 2013 16 nm FinFET TSMC [412][413]
Samsung 10 nm 51,820,000 2013 10 nm FinFET Samsung [414][415]
Intel 14 nm 37,500,000 2014 14 nm FinFET Intel [407]
14LP 32,940,000 2015 14 nm FinFET Samsung [414]
TSMC 10 nm 52,510,000 2016 10 nm FinFET TSMC [412][416]
12LP 36,710,000 2017 12 nm FinFET GlobalFoundries, Samsung [236]
N7FF 96,500,000

101,850,000[417]

2017 7 nm FinFET TSMC [418][419][420]
8LPP 61,180,000 2018 8 nm FinFET Samsung [414]
7LPE 95,300,000 2018 7 nm FinFET Samsung [419]
Intel 10 nm 100,760,000

106,100,000[417]

2018 10 nm FinFET Intel [421]
5LPE 126,530,000

133,560,000[417] 134,900,000[422]

2018 5 nm FinFET Samsung [423][424]
N7FF+ 113,900,000 2019 7 nm FinFET TSMC [418][419]
CLN5FF 171,300,000

185,460,000[417]

2019 5 nm FinFET TSMC [389]
Intel 7 100,760,000

106,100,000[417]

2021 7 nm FinFET Intel
4LPE 145,700,000[422] 2021 4 nm FinFET Samsung [425][426][427]
N4 196,600,000[417][428] 2021 4 nm FinFET TSMC [429]
N4P 196,600,000[417][428] 2022 4 nm FinFET TSMC [430]
3GAE 202,850,000[417] 2022 3 nm MBCFET Samsung [431][425][432]
N3 314,730,000[417] 2022 3 nm FinFET TSMC [433][434]
N4X ? 2023 4 nm FinFET TSMC [435][436][437]
N3E ? 2023 3 nm FinFET TSMC [434][438]
3GAP ? 2023 3 nm MBCFET Samsung [425]
Intel 4 160,000,000[439] 2023 4 nm FinFET Intel [440][441][442]
Intel 3 ? 2023 3 nm FinFET Intel [441][442]
Intel 20A ? 2024 2 nm RibbonFET Intel [441][442]
Intel 18A ? 2025 sub-2 nm RibbonFET Intel [441]
2GAP ? 2025 2 nm MBCFET Samsung [425]
N2 ? 2025 2 nm GAAFET TSMC [434][438]
Samsung 1.4 nm ? 2027 1.4 nm ? Samsung [443]

See also

Notes

  1. Declassified 1998
  2. The TMS1000 is a microcontroller, the transistor count includes memory and input/output controllers, not just the CPU.
  3. 3,510 without depletion mode pull-up transistors
  4. 6,813 without depletion mode pull-up transistors
  5. 3,900,000,000 core chiplet die, 2,090,000,000 I/O die
  6. Estimate
  7. Versal Premium are confirmed to be shipping in 1H 2021 but nothing was mentioned about the VP1802 in particular. Usually Xilinx makes separate news for the release of its biggest devices so the VP1802 is likely to be released later.
  8. "Intelligence Processing Unit"

References

  1. Khosla, Robin (2017). Alternate high-k dielectrics for next-generation CMOS logic and memory technology (PhD). IIT Mandi.
  2. Hruska, Joel (August 2019). "Cerebras Systems Unveils 1.2 Trillion Transistor Wafer-Scale Processor for AI". extremetech.com. Retrieved September 6, 2019.
  3. Feldman, Michael (August 2019). "Machine Learning chip breaks new ground with waferscale integration". nextplatform.com. Retrieved September 6, 2019.
  4. Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Cerebras' 1.2 Trillion Transistor Deep Learning Processor". anandtech.com. Retrieved September 6, 2019.
  5. "A Look at Cerebras Wafer-Scale Engine: Half Square Foot Silicon Chip". WikiChip Fuse. November 16, 2019. Retrieved December 2, 2019.
  6. Everett, Joseph (August 26, 2020). "World's largest CPU has 850,000 7 nm cores that are optimized for AI and 2.6 trillion transistors". TechReportArticles.
  7. "Apple introduces M2 Ultra" (Press release). Apple. June 5, 2023.
  8. "John Gustafson's answer to How many individual transistors are in the world's most powerful supercomputer?". Quora. Retrieved August 22, 2019.
  9. Pires, Francisco (October 5, 2022). "Water-Based Chips Could be Breakthrough for Neural Networking, AI: Wetware has gained an entirely new meaning". Tom's Hardware. Retrieved October 5, 2022.
  10. Laws, David (April 2, 2018). "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum.
  11. Handy, Jim (May 26, 2014). "How Many Transistors Have Ever Shipped?". Forbes.
  12. "1971: Microprocessor Integrates CPU Function onto a Single Chip". The Silicon Engine. Computer History Museum. Retrieved September 4, 2019.
  13. Holt, Ray. "World's First Microprocessor". Retrieved March 5, 2016. 1st fully integrated chip set microprocessor
  14. "Alpha 21364 - Microarchitectures - Compaq - WikiChip". en.wikichip.org. Retrieved September 8, 2019.
  15. Holt, Ray M. (1998). The F14A Central Air Data Computer and the LSI Technology State-of-the-Art in 1968. p. 8.
  16. Holt, Ray M. (2013). "F14 TomCat MOS-LSI Chip Set". First Microprocessor. Archived from the original on November 6, 2020. Retrieved November 6, 2020.
  17. Ken Shirriff. "The Texas Instruments TMX 1795: the (almost) first, forgotten microprocessor". 2015.
  18. Ryoichi Mori; Hiroaki Tajima; Morihiko Tajima; Yoshikuni Okada (October 1977). "Microprocessors in Japan". Euromicro Newsletter. 3 (4): 50–7. doi:10.1016/0303-1268(77)90111-0.
  19. "NEC 751 (uCOM-4)". The Antique Chip Collector's Page. Archived from the original on May 25, 2011. Retrieved June 11, 2010.
  20. "1970s: Development and evolution of microprocessors" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019.
  21. "1973: 12-bit engine-control microprocessor (Toshiba)" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019.
  22. "Low Bandwidth Timeline  Semiconductor". Texas Instruments. Retrieved June 22, 2016.
  23. "The MOS 6502 and the Best Layout Guy in the World". research.swtch.com. January 3, 2011. Retrieved September 3, 2019.
  24. Shirriff, Ken (January 2023). "Counting the transistors in the 8086 processor: it's harder than you might think".
  25. "Digital History: ZILOG Z8000 (APRIL 1979)". OLD-COMPUTERS.COM : The Museum. Retrieved June 19, 2019.
  26. "Chip Hall of Fame: Motorola MC68000 Microprocessor". IEEE Spectrum. Institute of Electrical and Electronics Engineers. June 30, 2017. Retrieved June 19, 2019.
  27. Microprocessors: 1971 to 1976 Christiansen
  28. "Microprocessors 1976 to 1981". weber.edu. Retrieved August 9, 2014.
  29. "W65C816S 16-bit Core". www.westerndesigncenter.com. Retrieved September 12, 2017.
  30. Demone, Paul (November 9, 2000). "ARM's Race to World Domination". real world technologies. Retrieved July 20, 2015.
  31. Hand, Tom. "The Harris RTX 2000 Microcontroller" (PDF). mpeforth.com. Retrieved August 9, 2014.
  32. "Forth chips list". UltraTechnology. March 15, 2001. Retrieved August 9, 2014.
  33. Koopman, Philip J. (1989). "4.4 Architecture of the Novix NC4016". Stack Computers: the new wave. Ellis Horwood Series in Computers and Their Applications. Carnegie Mellon University. ISBN 978-0745804187. Retrieved August 9, 2014.
  34. "Fujitsu SPARC". cpu-collection.de. Retrieved June 30, 2019.
  35. Kimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function". IEEE Micro. 8 (2): 22–36. doi:10.1109/40.527. S2CID 9507994.
  36. "VL2333 - VTI - WikiChip". en.wikichip.org. Retrieved August 31, 2019.
  37. Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200". IEEE Micro. 8 (2): 12–21. doi:10.1109/40.526. S2CID 36938046.
  38. Bosshart, P.; Hewes, C.; Mi-Chang Chang; Kwok-Kit Chau; Hoac, C.; Houston, T.; Kalyan, V.; Lusky, S.; Mahant-Shetti, S.; Matzke, D.; Ruparel, K.; Ching-Hao Shaw; Sridhar, T.; Stark, D. (October 1987). "A 553K-Transistor LISP Processor Chip". IEEE Journal of Solid-State Circuits. 22 (5): 202–3. doi:10.1109/ISSCC.1987.1157084. S2CID 195841103.
  39. Fahlén, Lennart E.; Stockholm International Peace Research Institute (1987). "3. Hardware requirements for artificial intelligence § Lisp Machines: TI Explorer". Arms and Artificial Intelligence: Weapon and Arms Control Applications of Advanced Computing. SIPRI Monograph Series. Oxford University Press. p. 57. ISBN 978-0-19-829122-0.
  40. Jouppi, Norman P.; Tang, Jeffrey Y. F. (July 1989). "A 20-MIPS Sustained 32-bit CMOS Microprocessor with High Ratio of Sustained to Peak Performance". IEEE Journal of Solid-State Circuits. 24 (5): i. Bibcode:1989IJSSC..24.1348J. CiteSeerX 10.1.1.85.988. doi:10.1109/JSSC.1989.572612. WRL Research Report 89/11.
  41. "The CPU shack museum". CPUshack.com. May 15, 2005. Retrieved August 9, 2014.
  42. "Intel i960 Embedded Microprocessor". National High Magnetic Field Laboratory. Florida State University. March 3, 2003. Archived from the original on March 3, 2003. Retrieved June 29, 2019.
  43. Venkatasawmy, Rama (2013). The Digitization of Cinematic Visual Effects: Hollywood's Coming of Age. Rowman & Littlefield. p. 198. ISBN 9780739176214.
  44. Bakoglu, Grohoski, and Montoye. "The IBM RISC System/6000 processor: Hardware overview." IBM J. Research and Development. Vol. 34 No. 1, January 1990, pp. 12-22.
  45. "SH Microprocessor Leading the Nomadic Era" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019.
  46. "SH2: A Low Power RISC Micro for Consumer Applications" (PDF). Hitachi. Retrieved June 27, 2019.
  47. "HARP-1: A 120 MHz Superscalar PA-RISC Processor" (PDF). Hitachi. Archived from the original (PDF) on April 23, 2016. Retrieved June 19, 2019.
  48. White and Dhawan. "POWER2: next generation of the RISC System/6000 family" IBM J. Research and Development. Vol. 38 No. 5, September 1994, pp. 493-502.
  49. "ARM7 Statistics". Poppyfields.net. May 27, 1994. Retrieved August 9, 2014.
  50. "Forth Multiprocessor Chip MuP21". www.ultratechnology.com. Retrieved September 6, 2019. MuP21 has a 21-bit CPU core, a memory coprocessor, and a video coprocessor
  51. "F21 CPU". www.ultratechnology.com. Retrieved September 6, 2019. F21 offers video I/O, analog I/O, serial network I/O, and a parallel I/O port on chip. F21 has a transistor count of about 15,000 vs about 7,000 for MuP21.
  52. "Ars Technica: PowerPC on Apple: An Architectural History, Part I - Page 2 - (8/2004)". archive.arstechnica.com. Retrieved August 11, 2020.
  53. Gary et al. (1994). "The PowerPC 603 microprocessor: a low-power design for portable applications." Proceedings of COMPCON 94. DOI: 10.1109/CMPCON.1994.282894
  54. Slaton et al. (1995). "The PowerPC 603e microprocessor: an enhanced, low-power, superscalar microprocessor." Proceedings of ICCD '95 International Conference on Computer Design. DOI: 10.1109/ICCD.1995.528810
  55. Bowhill, William J. et al. (1995). "Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU". Digital Technical Journal, Volume 7, Number 1, pp. 100118.
  56. "Intel Pentium Pro 180". hw-museum.cz. Retrieved September 8, 2019.
  57. "PC Guide Intel Pentium Pro ("P6")". PCGuide.com. April 17, 2001. Archived from the original on April 14, 2001. Retrieved August 9, 2014.
  58. Gaddis, N.; Lotz, J. (November 1996). "A 64-b quad-issue CMOS RISC microprocessor". IEEE Journal of Solid-State Circuits 31 (11): pp. 16971702.
  59. Bouchard, Gregg. "Design objectives of the 0.35 μm Alpha 21164 Microprocessor". IEEE Hot Chips Symposium, August 1996, IEEE Computer Society.
  60. Ulf Samuelsson. "Transistor count of common uCs?". www.embeddedrelated.com. Retrieved September 8, 2019. IIRC, The AVR core is 12,000 gates, and the megaAVR core is 20,000 gates. Each gate is 4 transistors. The chip is considerably larger since the memory uses quite a lot.
  61. Gronowski, Paul E. et al. (May 1998). "High-performance microprocessor design". IEEE Journal of Solid-State Circuits 33 (5): pp. 676686.
  62. Nakagawa, Norio; Arakawa, Fumio (April 1999). "Entertainment Systems and High-Performance Processor SH-4" (PDF). Hitachi Review. 48 (2): 58–63. Retrieved March 18, 2023.
  63. Nishii, O.; Arakawa, F.; Ishibashi, K.; Nakano, S.; Shimura, T.; Suzuki, K.; Tachibana, M.; Totsuka, Y.; Tsunoda, T.; Uchiyama, K.; Yamada, T.; Hattori, T.; Maejima, H.; Nakagawa, N.; Narita, S.; Seki, M.; Shimazaki, Y.; Satomura, R.; Takasuga, T.; Hasegawa, A. (1998). "A 200 MHZ 1.2 W 1.4 GFLOPS microprocessor with graphic operation unit". 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156). IEEE. pp. 18.1-1 - 18.1-11. doi:10.1109/ISSCC.1998.672469. ISBN 0-7803-4344-1. S2CID 45392734. Retrieved March 17, 2023.
  64. Diefendorff, Keith (April 19, 1999). "Sony's Emotionally Charged Chip: Killer Floating-Point "Emotion Engine" To Power PlayStation 2000" (PDF). Microprocessor Report. 13 (5). S2CID 29649747. Archived from the original (PDF) on February 28, 2019. Retrieved June 19, 2019.
  65. Hennessy, John L.; Patterson, David A. (May 29, 2002). Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann. p. 491. ISBN 978-0-08-050252-6. Retrieved April 9, 2013.
  66. "NVIDIA GeForce 7800 GTX GPU Review". PC Perspective. June 22, 2005. Retrieved June 18, 2019.
  67. Ando, H.; Yoshida, Y.; Inoue, A.; Sugiyama, I.; Asakawa, T.; Morita, K.; Muta, T.; Otokurumada, T.; Okada, S.; Yamashita, H.; Satsukawa, Y.; Konmoto, A.; Yamashita, R.; Sugiyama, H. (2003). "A 1.3GHz fifth generation SPARC64 microprocessor". Proceedings of the 40th Annual Design Automation Conference. Design Automation Conference. pp. 702–705. doi:10.1145/775832.776010. ISBN 1-58113-688-9.
  68. Krewell, Kevin (21 October 2002). "Fujitsu's SPARC64 V Is Real Deal". Microprocessor Report.
  69. "Intel® Pentium® M Processor 1.60 GHZ, 1M Cache, 400 MHZ FSB Product Specifications".
  70. "EE+GS". PS2 Dev Wiki.
  71. "SONY MARKETING (JAPAN) ANNOUNCES LAUNCH OF "PSX" DESR-5000 and DESR-7000 TOWARDS THE END OF 2003" (Press release). Sony. November 27, 2003.
  72. "EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP" (PDF). Sony. April 21, 2003. Retrieved March 19, 2023.
  73. "Sony PSX's 90nm CPU is 'not 90nm'". The Register. January 30, 2004.
  74. "Semi Insights stands by 'not 90-nm' description of PSX chip". EE Times. February 5, 2004.
  75. "Intel® Pentium® M Processor 760 (2M Cache, 2.00A GHZ, 533 MHZ FSB) Product Specifications".
  76. Fujitsu Limited (August 2004). SPARC64 V Processor For UNIX Server.
  77. "A Glimpse Inside The Cell Processor". Gamasutra. July 13, 2006. Retrieved June 19, 2019.
  78. "Intel Pentium D Processor 920". Intel. Retrieved January 5, 2023.
  79. "PRESS KIT — Dual-core Intel Itanium Processor". Intel. Retrieved August 9, 2014.
  80. Toepelt, Bert (January 8, 2009). "AMD Phenom II X4: 45nm Benchmarked — The Phenom II And AMD's Dragon Platform". TomsHardware.com. Retrieved August 9, 2014.
  81. "ARM (Advanced RISC Machines) Processors". EngineersGarage.com. Retrieved August 9, 2014.
  82. "Panasonic starts to sell a New-generation UniPhier System LSI". Panasonic. October 10, 2007. Retrieved July 2, 2019.
  83. "SPARC64 VI Extensions" page 56, Fujitsu Limited, Release 1.3, 27 March 2007
  84. Morgan, Timothy Prickett (17 July 2008). "Fujitsu and Sun Flex Their Quads with New Sparc Server Lineup". The Unix Guardian, Vol. 8, No. 27.
  85. Takumi Maruyama (2009). SPARC64 VIIIfx: Fujitsu's New Generation Octo Core Processor for PETA Scale computing (PDF). Proceedings of Hot Chips 21. IEEE Computer Society. Archived from the original (PDF) on October 8, 2010. Retrieved June 30, 2019.
  86. "Intel Atom N450 specifications". Intel. Retrieved June 8, 2023.
  87. "Intel Atom D510 specifications". Intel. Retrieved June 8, 2023.
  88. Stokes, Jon (February 10, 2010). "Sun's 1 billion-transistor, 16-core Niagara 3 processor". ArsTechnica.com. Retrieved August 9, 2014.
  89. "IBM to Ship World's Fastest Microprocessor". IBM. September 1, 2010. Retrieved August 9, 2014.
  90. "Intel to deliver first computer chip with two billion transistors". AFP. February 5, 2008. Archived from the original on May 20, 2011. Retrieved February 5, 2008.
  91. "Intel Previews Intel Xeon 'Nehalem-EX' Processor." May 26, 2009. Retrieved on May 28, 2009.
  92. Morgan, Timothy Prickett (November 21, 2011), "Fujitsu parades 16-core Sparc64 super stunner", The Register, retrieved December 8, 2011
  93. Angelini, Chris (November 14, 2011). "Intel Core i7-3960X Review: Sandy Bridge-E And X79 Express". TomsHardware.com. Retrieved August 9, 2014.
  94. "IDF2012 Mark Bohr, Intel Senior Fellow" (PDF).
  95. "Images of SPARC64" (PDF). fujitsu.com. Retrieved August 29, 2017.
  96. "Intel's Atom Architecture: The Journey Begins". AnandTech. Retrieved April 4, 2010.
  97. "Intel Xeon Phi SE10X". TechPowerUp. Retrieved July 20, 2015.
  98. Shimpi, Lal. "The Haswell Review: Intel Core i7-4770K & i5-4670K Tested". anandtech. Retrieved November 20, 2014.
  99. "Dimmick, Frank (August 29, 2014). "Intel Core i7 5960X Extreme Edition Review". Overclockers Club. Retrieved August 29, 2014.
  100. "Apple A8X". NotebookCheck. Retrieved July 20, 2015.
  101. "Intel Readying 15-core Xeon E7 v2". AnandTech. Retrieved August 9, 2014.
  102. "Intel Xeon E5-2600 v3 Processor Overview: Haswell-EP Up to 18 Cores". pcper. September 8, 2014. Retrieved January 29, 2015.
  103. "Intel's Broadwell-U arrives aboard 15W, 28W mobile processors". TechReport. January 5, 2015. Retrieved January 5, 2015.
  104. "Oracle Cranks up the Cores to 32 with Sparc M7 Chip". August 13, 2014.
  105. "Broadwell-E: Intel Core i7-6950X, 6900K, 6850K & 6800K Review". Tom's Hardware. May 30, 2016. Retrieved April 12, 2017.
  106. "The Broadwell-E Review". PC Gamer. July 8, 2016. Retrieved April 12, 2017.
  107. "HUAWEI TO UNVEIL KIRIN 970 SOC WITH AI UNIT, 5.5 BILLION TRANSISTORS AND 1.2 GBPS LTE SPEED AT IFA 2017". firstpost.com. September 1, 2017. Retrieved November 18, 2018.
  108. "Broadwell-EP Architecture - Intel Xeon E5-2600 v4 Broadwell-EP Review". Tom's Hardware. March 31, 2016. Retrieved April 4, 2016.
  109. "About the ZipCPU". zipcpu.com. Retrieved September 10, 2019. As of ORCONF, 2016, the ZipCPU used between 1286 and 4926 6-LUTs, depending upon how it is configured.
  110. "Qualcomm Snapdragon 835 (8998)". NotebookCheck. Retrieved September 23, 2017.
  111. Takahashi, Dean (January 3, 2017). "Qualcomm's Snapdragon 835 will debut with 3 billion transistors and a 10nm manufacturing process". VentureBeat.
  112. Singh, Teja (2017). "3.2 Zen: A Next-Generation High-Performance x86 Core". Proc. IEEE International Solid-State Circuits Conference. pp. 52–54.
  113. Cutress, Ian (February 22, 2017). "AMD Launches Zen". Anandtech.com. Retrieved February 22, 2017.
  114. "Ryzen 5 1600 - AMD". Wikichip.org. April 20, 2018. Retrieved December 9, 2018.
  115. "Kirin 970  HiSilicon". Wikichip. March 1, 2018. Retrieved November 8, 2018.
  116. Leadbetter, Richard (April 6, 2017). "Inside the next Xbox: Project Scorpio tech revealed". Eurogamer. Retrieved May 3, 2017.
  117. "Intel Xeon Platinum 8180". TechPowerUp. December 1, 2018. Retrieved December 2, 2018.
  118. Pellerano, Stefano (March 2, 2022). "Circuit Design to Harness the Power of Scaling and Integration (ISSCC 2022)". YouTube.
  119. Lee, Y. "SiFive Freedom SoCs : Industry's First Open Source RISC V Chips" (PDF). HotChips 29 IOT/Embedded. Archived from the original (PDF) on August 9, 2020. Retrieved June 19, 2019.
  120. "Documents at Fujitsu" (PDF). fujitsu.com. Retrieved August 29, 2017.
  121. Schmerer, Kai (November 5, 2018). "iPad Pro 2018: A12X-Prozessor bietet deutlich mehr Leistung". ZDNet.de (in German).
  122. "Qualcomm Datacenter Technologies Announces Commercial Shipment of Qualcomm Centriq 2400 – The World's First 10nm Server Processor and Highest Performance Arm-based Server Processor Family Ever Designed". Qualcomm. Retrieved November 9, 2017.
  123. "Qualcomm Snapdragon 1000 for laptops could pack 8.5 billion transistors". techradar. Retrieved September 23, 2017.
  124. "Spotted: Qualcomm Snapdragon 8cx Wafer on 7nm". AnandTech. Retrieved December 6, 2018.
  125. "HiSilicon Kirin 710". Notebookcheck. September 19, 2018. Retrieved November 24, 2018.
  126. Yang, Daniel; Wegner, Stacy (September 21, 2018). "Apple iPhone Xs Max Teardown". TechInsights. Retrieved September 21, 2018.
  127. "Apple's A12 Bionic is the first 7-nanometer smartphone chip". Engadget. Retrieved September 26, 2018.
  128. "Kirin 980  HiSilicon". Wikichip. November 8, 2018. Retrieved November 8, 2018.
  129. "Qualcomm Snapdragon 8180: 7nm SoC SDM1000 With 8.5 Billion Transistors To Challenge Apple A12 Bionic Chipset". dailyhunt. Retrieved September 21, 2018.
  130. Zafar, Ramish (October 30, 2018). "Apple's A12X Has 10 Billion Transistors, 90% Performance Boost & 7-Core GPU". Wccftech.
  131. "Fujitsu began to produce Japan's billions of super-calculations with the strongest ARM processor A64FX". firstxw.com. April 16, 2019. Archived from the original on June 20, 2019. Retrieved June 19, 2019.
  132. "Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors". Fujitsu. August 22, 2018. Retrieved June 19, 2019.
  133. "Hot Chips 30: Nvidia Xavier SoC". fuse.wikichip.org. September 18, 2018. Retrieved December 6, 2018.
  134. Frumusanu, Andrei. "The Samsung Galaxy S10+ Snapdragon & Exynos Review: Almost Perfect, Yet So Flawed". www.anandtech.com. Retrieved February 19, 2021.
  135. "Zen 2 Microarchitecture". WikiChip. Retrieved February 21, 2023.
  136. "AMD Ryzen 9 3900X and Ryzen 7 3700X Review: Zen 2 and 7nm Unleashed". Tom's Hardware. July 7, 2019. Retrieved October 19, 2019.
  137. Frumusanu, Andrei. "The Huawei Mate 30 Pro Review: Top Hardware without Google?". AnandTech. Retrieved January 2, 2020.
  138. Zafar, Ramish (September 10, 2019). "Apple A13 For iPhone 11 Has 8.5 Billion Transistors, Quad-Core GPU". Wccftech. Retrieved September 11, 2019.
  139. Introducing iPhone 11 Pro — Apple Youtube Video, retrieved September 11, 2019
  140. "Hot Chips 2020 Live Blog: IBM z15". AnandTech. August 17, 2020.
  141. Broekhuijsen, Niels (October 23, 2019). "AMD's 64-Core EPYC and Ryzen CPUs Stripped: A Detailed Inside Look". Retrieved October 24, 2019.
  142. Mujtaba, Hassan (October 22, 2019). "AMD 2nd Gen EPYC Rome Processors Feature A Gargantuan 39.54 Billion Transistors, IO Die Pictured in Detail". Retrieved October 24, 2019.
  143. Friedman, Alan (December 14, 2019). "5nm Kirin 1020 SoC tipped for next year's Huawei Mate 40 line". Phone Arena. Retrieved December 23, 2019.
  144. Verheyde, Arne (December 5, 2019). "Amazon Compares 64-core ARM Graviton2 to Intel's Xeon". Tom's Hardware. Retrieved December 6, 2019.
  145. Morgan, Timothy Prickett (December 3, 2019). "Finally: AWS Gives Servers A Real Shot In The Arm". The Next Platform. Retrieved December 6, 2019.
  146. Friedman, Alan (October 10, 2019). "Qualcomm will reportedly introduce the Snapdragon 865 SoC as soon as next month". Phone Arena. Retrieved February 19, 2021.
  147. "Xiaomi Mi 10 Teardown Analysis | TechInsights". www.techinsights.com. Retrieved February 19, 2021.
  148. "The Linley Group - TI Jacinto Accelerates Level 3 ADAS". www.linleygroup.com. Retrieved February 12, 2021.
  149. "Apple unveils A14 Bionic processor with 40% faster CPU and 11.8 billion transistors". Venturebeat. November 10, 2020. Retrieved November 24, 2020.
  150. "Apple says new Arm-based M1 chip offers the 'longest battery life ever in a Mac'". The Verge. November 10, 2020. Retrieved November 11, 2020.
  151. "Kirin 9000S has about 6 billion fewer transistors than Kirin 9000, but its performance is stronger! How did you do it?". iNews. September 13, 2023. Retrieved September 24, 2023.
  152. Ikoba, Jed John (October 23, 2020). "Multiple benchmark tests rank the Kirin 9000 as one of the most-powerful chipset yet". Gizmochina. Retrieved November 14, 2020.
  153. Frumusanu, Andrei. "Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm Kirin 9000". www.anandtech.com. Retrieved November 14, 2020.
  154. Burd, Thomas (2022). "2.7 Zen3: The AMD 2nd-Generation 7nm x86-64 Microprocessor Core". Proc. IEEE International Solid-State Circuits Conference. pp. 54–56.
  155. "For a long time, Intel once again named the number of transistors in the chip. There are supposed to be about 6 billion for Rocket Lake-S. Coffee Lake-S is supposed to have about 4 billion. The chip with eight cores is about 30 % bigger than the predecessor with ten core". twitter. Retrieved March 16, 2021.
  156. "Intel's Core i7-11700K 'Rocket Lake' Delidded: A Big Die, Revealed". tomshardware. March 12, 2021. Retrieved March 16, 2021.
  157. "Intel's 14nm density". www.techcenturion.com. Retrieved November 26, 2019.
  158. "AMD Ryzen 7 5800H Specs". TechPowerUp. Retrieved September 20, 2021.
  159. "AMD Epyc 7763 specifications". August 2023.
  160. Shankland, Stephen. "Apple's A15 Bionic chip powers iPhone 13 with 15 billion transistors, new graphics and AI". CNET. Retrieved September 20, 2021.
  161. "Apple iPhone 13 Pro Teardown | TechInsights". www.techinsights.com. Retrieved September 29, 2021.
  162. Goldman, Joshua. "Apple A17 Pro Chip: The New Brain Inside iPhone 15 Pro, Pro Max". CNET. Retrieved September 12, 2023.
  163. "Apple unveils M1 Pro and M1 Max chips for latest MacBook Pro laptops". VentureBeat. October 18, 2021.
  164. "Apple Announces M1 Pro & M1 Max: Giant New Arm SoCs with All-Out Performance". AnanadTech. Retrieved December 2, 2021.
  165. "Apple unveils new computer chips amid shortage". BBC News. October 19, 2021.
  166. "Apple Joins 3D-Fabric Portfolio with M1 Ultra?". TechInsights. Retrieved July 8, 2022.
  167. "Hot Chips 2020 live blog". AnandTech. August 17, 2020.
  168. "Phantom X2 Series 5G powered by MediaTek Dimensity 9000". Mediatek. December 12, 2022.
  169. "MediaTek Dimensity 9000". Mediatek. January 21, 2023.
  170. "Apple unveils M1 Ultra, the world's most powerful chip for a personal computer". Apple Newsroom. Retrieved March 9, 2022.
  171. Shankland, Stephen. "Meet Apple's Enormous 20-Core M1 Ultra Processor, the Brains in the New Mac Studio Machine". CNET. Retrieved March 9, 2022.
  172. "AMD releases Milan-X CPUs". AnandTech. March 21, 2022.
  173. "IBM Telum Hot Chips slide deck" (PDF). August 23, 2021.
  174. "IBM z16 announcement". April 5, 2022.
  175. "Apple unveils M2, taking the breakthrough performance and capabilities of M1 even further". Apple. June 6, 2022.
  176. "Apple A16 Bionic announced for the iPhone 14 Pro and iPhone 14 Pro Max". NotebookCheck. September 7, 2022.
  177. "iPhone 14 Pro and Pro Max Only Models to Get New A16 Chip". CNET. September 7, 2022.
  178. "The Apple 2022 Fall iPhone Event Live Blog". AnandTech. September 7, 2022.
  179. "MediaTek Dimensity 9200: New flagship chipset debuts with ARM Cortex-X3 CPU and Immortalis-G715 GPU cores built around TSMC N4P node". NotebookCheck. November 8, 2022.
  180. "Dimensity 9200 specs". Mediatek. November 8, 2022.
  181. "Dimensity 9200 presentation". Mediatek. November 8, 2022.
  182. "AMD EPYC Genoa Gaps Intel Xeon in Stunning Fashion". ServeTheHome. November 10, 2022.
  183. "Innovation for the Next Decade of Compute Efficiency – slides from ISSCC 2023 talk and link to video". Quasar Zone. February 21, 2023.
  184. "AMD Aims to Break the ZettaFLOP Barrier by 2035, Lays Down Next-Gen Plans to Resolve Efficiency Problems". Appuals. February 21, 2023.
  185. "AMD Lays The Path To Zettascale Computing: Talks CPU & GPU Performance Plus Efficiency Trends, Next-Gen Chiplet Packaging & More". WCCFtech. February 20, 2023.
  186. "AMD EPYC Genoa & SP5 Platform Leaked – 5nm Zen 4 CCD Measures Roughly 72mm, 12 CCD Package at 5428mm2, Up To 700W Peak Socket Power". WCCFtech. August 17, 2021.
  187. "Leaked AMD Epyc Genoa Docs Reveal 96 Cores, Max TDP of 700W, and Zen 4 Chiplet Dimensions". HardwareTimes. August 17, 2021.
  188. "4th Gen Intel Xeon Scalable Sapphire Rapids Leaps Forward". ServeTheHome. January 10, 2023.
  189. "Wie vier Dies zu einem "monolithischen" Sapphire Rapids werden". hardwareLUXX. February 21, 2022.
  190. "Apple unveils M2 Pro and M2 Max: next-generation chips for next-level workflows". Apple (Press release). January 17, 2023.
  191. "AMD EPYC Bergamo Launched 128 Cores Per Socket and 1024 Threads Per 1U". ServeTheHome. June 13, 2023.
  192. Williams, Chris. "Nvidia's Tesla P100 has 15 billion transistors, 21TFLOPS". www.theregister.co.uk. Retrieved August 12, 2019.
  193. "Famous Graphics Chips: NEC µPD7220 Graphics Display Controller". IEEE Computer Society. Institute of Electrical and Electronics Engineers. August 22, 2018. Retrieved June 21, 2019.
  194. "GPU History: Hitachi ARTC HD63484. The second graphics processor". IEEE Computer Society. Institute of Electrical and Electronics Engineers. October 7, 2018. Retrieved June 21, 2019.
  195. "Big Book of Amiga Hardware".
  196. MOS Technology Agnus. ISBN 5511916846.
  197. "30 Years of Console Gaming". Klinger Photography. August 20, 2017. Retrieved June 19, 2019.
  198. "Diamond Edge 3D (nVidia NV1+Sega Saturn)". Naver. February 24, 2017. Retrieved June 19, 2019.
  199. "Sega Saturn". MAME. Retrieved July 18, 2019.
  200. "ASIC CHIPS ARE INDUSTRY'S GAME WINNERS". The Washington Post. September 18, 1995. Retrieved June 19, 2019.
  201. "Is it Time to Rename the GPU?". Jon Peddie Research. IEEE Computer Society. July 9, 2018. Retrieved June 19, 2019.
  202. "FastForward Sony Taps LSI Logic for PlayStation Video Game CPU Chip". FastForward. Retrieved January 29, 2014.
  203. "Reality Co-Processor − The Power In Nintendo64" (PDF). Silicon Graphics. August 26, 1997. Archived from the original (PDF) on May 19, 2020. Retrieved June 18, 2019.
  204. "Imagination PowerVR PCX2 GPU". VideoCardz.net. Retrieved June 19, 2019.
  205. Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019.
  206. "3D accelerator database". Vintage 3D. Retrieved July 21, 2019.
  207. "RIVA128 Datasheet". SGS Thomson Microelectronics. Retrieved July 21, 2019.
  208. Singer, Graham (April 3, 2013). "History of the Modern Graphics Processor, Part 2". TechSpot. Retrieved July 21, 2019.
  209. "Remembering the Sega Dreamcast". Bit-Tech. September 29, 2009. Retrieved June 18, 2019.
  210. Weinberg, Neil (September 7, 1998). "Comeback kid". Forbes. Retrieved June 19, 2019.
  211. Charles, Bertie (1998). "Sega's New Dimension". Forbes. Forbes Incorporated. 162 (5–9): 206. The chip, etched in 0.25-micron detail — state-of-the-art for graphics processors — fits 10 million transistors
  212. Hagiwara, Shiro; Oliver, Ian (November–December 1999). "Sega Dreamcast: Creating a Unified Entertainment World". IEEE Micro. IEEE Computer Society. 19 (6): 29–35. doi:10.1109/40.809375. Archived from the original on August 23, 2000. Retrieved June 27, 2019.
  213. "VideoLogic Neon 250 4MB". VideoCardz.net. Retrieved June 19, 2019.
  214. Shimpi, Anand Lal (November 21, 1998). "Fall Comdex '98 Coverage". AnandTech. Retrieved June 19, 2019.
  215. "EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP" (PDF). Sony. April 21, 2003. Retrieved June 26, 2019.
  216. "NVIDIA NV10 A3 GPU Specs". TechPowerUp. Retrieved June 19, 2019.
  217. IGN Staff (November 4, 2000). "Gamecube Versus PlayStation 2". IGN. Retrieved November 22, 2015.
  218. "NVIDIA NV2A GPU Specs". TechPowerUp. Retrieved July 21, 2019.
  219. "ATI Xenos GPU Specs". TechPowerUp. Retrieved June 21, 2019.
  220. International, GamesIndustry (July 14, 2005). "TSMC to manufacture X360 GPU". Eurogamer. Retrieved August 22, 2006.
  221. "NVIDIA Playstation 3 RSX 65nm Specs". TechPowerUp. Retrieved June 21, 2019.
  222. "PS3 Graphics Chip Goes 65nm in Fall". Edge Online. June 26, 2008. Archived from the original on July 25, 2008.
  223. "NVIDIA's 1.4 Billion Transistor GPU: GT200 Arrives as the GeForce GTX 280 & 260". AnandTech.com. Retrieved August 9, 2014.
  224. "The Radeon HD 4850 & 4870: AMD Wins at $199 and $299". AnandTech.com. Retrieved August 9, 2014.
  225. Glaskowsky, Peter. "ATI and Nvidia face off-obliquely". CNET. Archived from the original on January 27, 2012. Retrieved August 9, 2014.
  226. Woligroski, Don (December 22, 2011). "AMD Radeon HD 7970". TomsHardware.com. Retrieved August 9, 2014.
  227. http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
  228. Smith, Ryan (November 12, 2012). "NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last". AnandTech.
  229. "Whitepaper: NVIDIA GeForce GTX 680" (PDF). NVIDIA. 2012. Archived from the original (PDF) on April 17, 2012.
  230. Kan, Michael (August 18, 2020). "Xbox Series X May Give Your Wallet a Workout Due to High Chip Manufacturing Costs". PCMag. Retrieved September 5, 2020.
  231. "AMD Xbox One GPU". www.techpowerup.com. Retrieved February 5, 2020.
  232. "AMD PlayStation 4 GPU". www.techpowerup.com. Retrieved February 5, 2020.
  233. "AMD Xbox One S GPU". www.techpowerup.com. Retrieved February 5, 2020.
  234. "AMD PlayStation 4 Pro GPU". www.techpowerup.com. Retrieved February 5, 2020.
  235. Smith, Ryan (June 29, 2016). "The AMD RX 480 Preview". Anandtech.com. Retrieved February 22, 2017.
  236. Schor, David (July 22, 2018). "VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP". WikiChip Fuse. Retrieved May 31, 2019.
  237. Harris, Mark (April 5, 2016). "Inside Pascal: NVIDIA's Newest Computing Platform". Nvidia developer blog.
  238. "GPU Database: Pascal". TechPowerUp. July 26, 2023.
  239. "AMD Xbox One X GPU". www.techpowerup.com. Retrieved February 5, 2020.
  240. "Radeon's next-generation Vega architecture" (PDF).
  241. Durant, Luke; Giroux, Olivier; Harris, Mark; Stam, Nick (May 10, 2017). "Inside Volta: The World's Most Advanced Data Center GPU". Nvidia developer blog.
  242. "NVIDIA TURING GPU ARCHITECTURE: Graphics Reinvented" (PDF). Nvidia. 2018. Retrieved June 28, 2019.
  243. "NVIDIA GeForce GTX 1650". www.techpowerup.com. Retrieved February 5, 2020.
  244. "NVIDIA GeForce GTX 1660 Ti". www.techpowerup.com. Retrieved February 5, 2020.
  245. "AMD Radeon RX 5700 XT". www.techpowerup.com. Retrieved February 5, 2020.
  246. "AMD Radeon RX 5500 XT". www.techpowerup.com. Retrieved February 5, 2020.
  247. "AMD Arcturus GPU Specs". TechPowerUp. Retrieved November 10, 2022.
  248. Walton, Jared (May 14, 2020). "Nvidia Unveils Its Next-Generation 7nm Ampere A100 GPU for Data Centers, and It's Absolutely Massive". Tom's Hardware.
  249. "Nvidia Ampere Architecture". www.nvidia.com. Retrieved May 15, 2020.
  250. "NVIDIA GA102 GPU Specs". Techpowerup. Retrieved September 5, 2020.
  251. "'Giant Step into the Future': NVIDIA CEO Unveils GeForce RTX 30 Series GPUs". www.nvidia.com. September 2020. Retrieved September 5, 2020.
  252. "NVIDIA GA103 GPU Specs". TechPowerUp. Retrieved March 21, 2023.
  253. "NVIDIA GeForce RTX 3070 Specs". TechPowerUp. Retrieved September 20, 2021.
  254. "NVIDIA GA106 specs". TechPowerUp. Retrieved March 22, 2023.
  255. "NVIDIA GA107 GPU Specs". TechPowerUp. Retrieved March 21, 2023.
  256. "MI250X die size estimates". Twitter. November 17, 2021.
  257. "AMD Instinct MI250 Professional Graphics Card". VideoCardz. November 2, 2022.
  258. "AMD's Instinct MI250X OAM Card Pictured: Aldebaran's Massive Die Revealed". Tom's Hardware. November 17, 2021.
  259. "AMD MI250X and Toplogies Explained at HC34". ServeTheHome. August 22, 2022.
  260. "Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips". HPCWire. March 22, 2022. Retrieved March 23, 2022.
  261. "NVIDIA details AD102 GPU, up to 18432 CUDA cores, 76.3B transistors and 608 mm²". VideoCardz. September 20, 2022.
  262. "NVIDIA confirms Ada 102/103/104 GPU specs, AD104 has more transistors than GA102". VideoCardz. September 23, 2022.
  263. "Alleged Nvidia AD106 and AD107 GPU Pics, Specs, Die Sizes Revealed". Tom's Hardware. February 3, 2023.
  264. "NVIDIA GeForce RTX 4060 Ti "AD106-350" GPU Pictured, Uses Samsung GDDR6 Dies". WCCFtech. April 28, 2023.
  265. "NVIDIA's Smallest Ada GPU, The AD107-400, For GeForce RTX 4060 GPUs Pictured". WCCFtech. May 21, 2023.
  266. "AMD Unveils World's Most Advanced Gaming Graphics Cards, Built on Groundbreaking AMD RDNA 3 Architecture with Chiplet Design". AMD (Press release). November 3, 2022.
  267. "AMD Announces the $999 Radeon RX 7900 XTX... (endnote RX-819)". TechPowerUp. November 4, 2022.
  268. "AMD Navi 33 GPU Specs". TechPowerUp. Retrieved March 21, 2023.
  269. "AMD Has a GPU to Rival Nvidia's H100". HPCWire. June 13, 2023. Retrieved June 14, 2023.
  270. "Taiwan Company UMC Delivers 65nm FPGAs to Xilinx." SDA-ASIA Thursday, November 9, 2006.
  271. ""Altera's new 40nm FPGAs — 2.5 billion transistors!". pldesignline.com. Archived from the original on June 19, 2010. Retrieved January 22, 2009.
  272. "Altera unveils 28-nm Stratix V FPGA family". April 20, 2010. Retrieved April 20, 2010.
  273. "Design of a High-Density SoC FPGA at 20nm" (PDF). 2014. Archived from the original (PDF) on April 23, 2016. Retrieved July 16, 2017.
  274. Maxfield, Clive (October 2011). "New Xilinx Virtex-7 2000T FPGA provides equivalent of 20 million ASIC gates". EETimes. AspenCore. Retrieved September 4, 2019.
  275. Greenhill, D.; Ho, R.; Lewis, D.; Schmit, H.; Chan, K. H.; Tong, A.; Atsatt, S.; How, D.; McElheny, P. (February 2017). "3.3 a 14nm 1GHz FPGA with 2.5D transceiver integration". 2017 IEEE International Solid-State Circuits Conference (ISSCC). pp. 54–55. doi:10.1109/ISSCC.2017.7870257. ISBN 978-1-5090-3758-2. S2CID 2135354.
  276. "3.3 A 14nm 1GHz FPGA with 2.5D transceiver integration | DeepDyve". May 17, 2017. Archived from the original on May 17, 2017. Retrieved September 19, 2019.
  277. Santarini, Mike (May 2014). "Xilinx Ships Industry's First 20-nm All Programmable Devices" (PDF). Xcell journal. No. 86. Xilinx. p. 14. Retrieved June 3, 2014.
  278. Gianelli, Silvia (January 2015). "Xilinx Delivers the Industry's First 4M Logic Cell Device, Offering >50M Equivalent ASIC Gates and 4X More Capacity than Competitive Alternatives". www.xilinx.com. Retrieved August 22, 2019.
  279. Sims, Tara (August 2019). "Xilinx Announces the World's Largest FPGA Featuring 9 Million System Logic Cells". www.xilinx.com. Retrieved August 22, 2019.
  280. Verheyde, Arne (August 2019). "Xilinx Introduces World's Largest FPGA With 35 Billion Transistors". www.tomshardware.com. Retrieved August 23, 2019.
  281. Cutress, Ian (August 2019). "Xilinx Announces World Largest FPGA: Virtex Ultrascale+ VU19P with 9m Cells". www.anandtech.com. Retrieved September 25, 2019.
  282. Abazovic, Fuad (May 2019). "Xilinx 7nm Versal taped out last year". Retrieved September 30, 2019.
  283. Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Xilinx Versal AI Engine". Retrieved September 30, 2019.
  284. Krewell, Kevin (August 2019). "Hot Chips 2019 highlights new AI strategies". Retrieved September 30, 2019.
  285. Leibson, Steven (November 6, 2019). "Intel announces Intel Stratix 10 GX 10M FPGA, worlds highest capacity with 10.2 million logic elements". Retrieved November 7, 2019.
  286. Verheyde, Arne (November 6, 2019). "Intel Introduces World's Largest FPGA With 43.3 Billion Transistors". Retrieved November 7, 2019.
  287. Cutress, Ian (August 2020). "Hot Chips 2020 Live Blog: Xilinx Versal ACAPs". Retrieved September 9, 2020.
  288. "Xilinx Announces Full Production Shipments of 7nm Versal AI Core and Versal Prime Series Devices". April 27, 2021. Retrieved May 8, 2021.
  289. The DRAM memory of Robert Dennard history-computer.com
  290. "Late 1960s: Beginnings of MOS memory" (PDF). Semiconductor History Museum of Japan. January 23, 2019. Retrieved June 27, 2019.
  291. "1970: Semiconductors compete with magnetic cores". Computer History Museum. Retrieved June 19, 2019.
  292. "2.1.1 Flash Memory". TU Wien. Retrieved June 20, 2019.
  293. Shilov, Anton. "SK Hynix Starts Production of 128-Layer 4D NAND, 176-Layer Being Developed". www.anandtech.com. Retrieved September 16, 2019.
  294. "Samsung Begins Production of 100+ Layer Sixth-Generation V-NAND Flash". PC Perspective. August 11, 2019. Retrieved September 16, 2019.
  295. "1966: Semiconductor RAMs Serve High-speed Storage Needs". Computer History Museum. Retrieved June 19, 2019.
  296. "Specifications for Toshiba "TOSCAL" BC-1411". Old Calculator Web Museum. Archived from the original on July 3, 2017. Retrieved May 8, 2018.
  297. "Toshiba "Toscal" BC-1411 Desktop Calculator". Old Calculator Web Museum. Archived from the original on May 20, 2007.
  298. IBM first in IC memory. 1965. Retrieved June 19, 2019. {{cite book}}: |website= ignored (help)
  299. "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007.
  300. "1970s: SRAM evolution" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019.
  301. Pimbley, J. (2012). Advanced CMOS Process Technology. Elsevier. p. 7. ISBN 9780323156806.
  302. "Intel: 35 Years of Innovation (1968–2003)" (PDF). Intel. 2003. Archived from the original (PDF) on November 4, 2021. Retrieved June 26, 2019.
  303. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 362–363. ISBN 9783540342588. The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 µm2 memory cell size, a die size just under 10 mm2, and sold for around $21.
  304. "Manufacturers in Japan enter the DRAM market and integration densities are improved" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019.
  305. Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 via CORE.
  306. "Silicon Gate MOS 2102A". Intel. Retrieved June 27, 2019.
  307. "One of the Most Successful 16K Dynamic RAMs: The 4116". National Museum of American History. Smithsonian Institution. Retrieved June 20, 2019.
  308. Component Data Catalog (PDF). Intel. 1978. pp. 3–94. Retrieved June 27, 2019.
  309. "Memory". STOL (Semiconductor Technology Online). Retrieved June 25, 2019.
  310. "The Cutting Edge of IC Technology: The First 294,912-Bit (288K) Dynamic RAM". National Museum of American History. Smithsonian Institution. Retrieved June 20, 2019.
  311. "Computer History for 1984". Computer Hope. Retrieved June 25, 2019.
  312. "Japanese Technical Abstracts". Japanese Technical Abstracts. University Microfilms. 2 (3–4): 161. 1987. The announcement of 1M DRAM in 1984 began the era of megabytes.
  313. "KM48SL2000-7 Datasheet". Samsung. August 1992. Retrieved June 19, 2019.
  314. "Electronic Design". Electronic Design. Hayden Publishing Company. 41 (15–21). 1993. The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems.
  315. Breaking the gigabit barrier, DRAMs at ISSCC portend major system-design impact. (dynamic random access memory; International Solid-State Circuits Conference; Hitachi Ltd. and NEC Corp. research and development), January 9, 1995
  316. "Japanese Company Profiles" (PDF). Smithsonian Institution. 1996. Retrieved June 27, 2019.
  317. "History: 1990s". SK Hynix. Archived from the original on February 5, 2021. Retrieved July 6, 2019.
  318. "Samsung 50nm 2GB DDR3 chips are industry's smallest". SlashGear. September 29, 2008. Retrieved June 25, 2019.
  319. Shilov, Anton (July 19, 2017). "Samsung Increases Production Volumes of 8 GB HBM2 Chips Due to Growing Demand". AnandTech. Retrieved June 29, 2019.
  320. "Samsung Unleashes a Roomy DDR4 256GB RAM". Tom's Hardware. September 6, 2018. Retrieved June 21, 2019.
  321. "First 3D Nanotube and RRAM ICs Come Out of Foundry". IEEE Spectrum: Technology, Engineering, and Science News. July 19, 2019. Retrieved September 16, 2019. This wafer was made just last Friday… and it's the first monolithic 3D IC ever fabricated within a foundry
  322. "Three Dimensional Monolithic System-on-a-Chip". www.darpa.mil. Retrieved September 16, 2019.
  323. "DARPA 3DSoC Initiative Completes First Year, Update Provided at ERI Summit on Key Steps Achieved to Transfer Technology into SkyWater's 200mm U.S. Foundry". Skywater Technology Foundry (Press release). July 25, 2019. Retrieved September 16, 2019.
  324. "DD28F032SA Datasheet". Intel. Retrieved June 27, 2019.
  325. "TOSHIBA ANNOUNCES 0.13 MICRON 1Gb MONOLITHIC NAND FEATURING LARGE BLOCK SIZE FOR IMPROVED WRITE/ERASE SPEED PERFORMANCE". Toshiba. September 9, 2002. Archived from the original on March 11, 2006. Retrieved March 11, 2006.
  326. "TOSHIBA AND SANDISK INTRODUCE A ONE GIGABIT NAND FLASH MEMORY CHIP, DOUBLING CAPACITY OF FUTURE FLASH PRODUCTS". Toshiba. November 12, 2001. Retrieved June 20, 2019.
  327. "Our Proud Heritage from 2000 to 2009". Samsung Semiconductor. Samsung. Retrieved June 25, 2019.
  328. "TOSHIBA ANNOUNCES 1 GIGABYTE COMPACTFLASH™CARD". Toshiba. September 9, 2002. Archived from the original on March 11, 2006. Retrieved March 11, 2006.
  329. "History". Samsung Electronics. Samsung. Retrieved June 19, 2019.
  330. "TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS". Toshiba. April 17, 2007. Archived from the original on November 23, 2010. Retrieved November 23, 2010.
  331. "Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices". Toshiba. August 7, 2008. Retrieved June 21, 2019.
  332. "Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules". Toshiba. June 17, 2010. Retrieved June 21, 2019.
  333. "Samsung e·MMC Product family" (PDF). Samsung Electronics. December 2011. Archived from the original (PDF) on November 8, 2019. Retrieved July 15, 2019.
  334. Shilov, Anton (December 5, 2017). "Samsung Starts Production of 512 GB UFS NAND Flash Memory: 64-Layer V-NAND, 860 MB/s Reads". AnandTech. Retrieved June 23, 2019.
  335. Manners, David (January 30, 2019). "Samsung makes 1TB flash eUFS module". Electronics Weekly. Retrieved June 23, 2019.
  336. Tallis, Billy (October 17, 2018). "Samsung Shares SSD Roadmap for QLC NAND And 96-layer 3D NAND". AnandTech. Retrieved June 27, 2019.
  337. "Micron's 232 Layer NAND Now Shipping". AnandTech. July 26, 2022.
  338. "232-Layer NAND". Micron. Retrieved October 17, 2022.
  339. "First to Market, Second to None: the World's First 232-Layer NAND". Micron. July 26, 2022.
  340. "Comparison: Latest 3D NAND Products from YMTC, Samsung, SK hynix and Micron". TechInsights. January 11, 2023.
  341. Han-Way Huang (December 5, 2008). Embedded System Design with C805. Cengage Learning. p. 22. ISBN 978-1-111-81079-5. Archived from the original on April 27, 2018.
  342. Marie-Aude Aufaure; Esteban Zimányi (January 17, 2013). Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures. Springer. p. 136. ISBN 978-3-642-36318-4. Archived from the original on April 27, 2018.
  343. "1965: Semiconductor Read-Only-Memory Chips Appear". Computer History Museum. Retrieved June 20, 2019.
  344. "1971: Reusable semiconductor ROM introduced". The Storage Engine. Computer History Museum. Retrieved June 19, 2019.
  345. Iizuka, H.; Masuoka, F.; Sato, Tai; Ishikawa, M. (1976). "Electrically alterable avalanche-injection-type MOS READ-ONLY memory with stacked-gate structure". IEEE Transactions on Electron Devices. 23 (4): 379–387. Bibcode:1976ITED...23..379I. doi:10.1109/T-ED.1976.18415. ISSN 0018-9383. S2CID 30491074.
  346. µCOM-43 SINGLE CHIP MICROCOMPUTER: USERS' MANUAL (PDF). NEC Microcomputers. January 1978. Retrieved June 27, 2019.
  347. "2716: 16K (2K x 8) UV ERASABLE PROM" (PDF). Intel. Retrieved June 27, 2019.
  348. "1982 CATALOG" (PDF). NEC Electronics. Retrieved June 20, 2019.
  349. Component Data Catalog (PDF). Intel. 1978. pp. 1–3. Retrieved June 27, 2019.
  350. "27256 Datasheet" (PDF). Intel. Retrieved July 2, 2019.
  351. "History of Fujitsu's Semiconductor Business". Fujitsu. Retrieved July 2, 2019.
  352. "D27512-30 Datasheet" (PDF). Intel. Retrieved July 2, 2019.
  353. "A Computer Pioneer Rediscovered, 50 Years On". The New York Times. April 20, 1994. Archived from the original on November 4, 2016.
  354. "History of Computers and Computing, Birth of the modern computer, Relays computer, George Stibitz". history-computer.com. Retrieved August 22, 2019. Initially the 'Complex Number Computer' performed only complex multiplication and division, but later a simple modification enabled it to add and subtract as well. It used about 400-450 binary relays, 6-8 panels, and ten multiposition, multipole relays called "crossbars" for temporary storage of numbers.
  355. "1953: Transistorized Computers Emerge". Computer History Museum. Retrieved June 19, 2019.
  356. "ETL Mark III Transistor-Based Computer". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  357. "Brief History". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  358. "1962: Aerospace systems are first the applications for ICs in computers | The Silicon Engine | Computer History Museum". www.computerhistory.org. Retrieved September 2, 2019.
  359. "PDP-8 (Straight 8) Computer Functional Restoration". www.pdp8.net. Retrieved August 22, 2019. backplanes contain 230 cards, approximately 10,148 diodes, 1409 transistors, 5615 resistors, and 1674 capacitors
  360. "IBM 608 calculator". IBM. January 23, 2003. Retrieved March 8, 2021.
  361. "【NEC】 NEAC-2201". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  362. "【Hitachi and Japanese National Railways】 MARS-1". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  363. The IBM 7070 Data Processing System. Avery et al. (page 167)
  364. "【Matsushita Electric Industrial】 MADIC-I transistor-based computer". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  365. "【NEC】 NEAC-2203". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  366. "【Toshiba】 TOSBAC-2100". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  367. 7090 Data Processing System
  368. Luigi Logrippo. "My first two computers: Elea 9003 and Elea 6001: Memories of a 'bare-metal' programmer".
  369. "【Mitsubishi Electric】 MELCOM 1101". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  370. Erich Bloch (1959). The Engineering Design of the Stretch Computer (PDF). Eastern Joint Computer Conference.
  371. "【NEC】NEAC-L2". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  372. Thornton, James (1970). Design of a Computer: the Control Data 6600. p. 20.
  373. "Digital Equipment PDP-8/S".
  374. "The PDP-8/S - an exercise in cost reduction"
  375. "PDP-8/S"
  376. "The Digital Equipment Corporation PDP-8: Models and Options: The PDP-8/I".
  377. James F. O'Loughlin. "PDP-8/I: bigger on the inside yet smaller on the outside".
  378. Jan M. Rabaey, Digital Integrated Circuits, Fall 2001: Course Notes, Chapter 6: Designing Combinatorial Logic Gates in CMOS, retrieved October 27, 2012.
  379. Richard F. Tinder (January 2000). Engineering Digital Design. Academic Press. ISBN 978-0-12-691295-1.
  380. Engineers, Institute of Electrical Electronics (2000). 100-2000 (7th ed.). doi:10.1109/IEEESTD.2000.322230. ISBN 978-0-7381-2601-2. IEEE Std 100-2000.
  381. Smith, Kevin (August 11, 1983). "Image processor handles 256 pixels simultaneously". Electronics.
  382. Kanellos, Michael (February 9, 2005). "Cell chip: Hit or hype?". CNET News. Archived from the original on October 25, 2012.
  383. Kennedy, Patrick (June 2019). "Hands-on With a Graphcore C2 IPU PCIe Card at Dell Tech World". servethehome.com. Retrieved December 29, 2019.
  384. "Colossus  Graphcore". en.wikichip.org. Retrieved December 29, 2019.
  385. Graphcore. "IPU Technology". www.graphcore.ai.
  386. "Cerebras Unveils 2nd Gen Wafer Scale Engine: 850,000 Cores, 2.6 Trillion Transistors - ExtremeTech". www.extremetech.com. Retrieved April 22, 2021.
  387. "Cerebras Wafer Scale Engine WSE-2 and CS-2 at Hot Chips 34". ServeTheHome. August 23, 2022.
  388. "NVIDIA NVLink4 NVSwitch at Hot Chips 34". ServeTheHome. August 22, 2022.
  389. Schor, David (April 6, 2019). "TSMC Starts 5-Nanometer Risk Production". WikiChip Fuse. Retrieved April 7, 2019.
  390. "1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated". Computer History Museum. Retrieved July 17, 2019.
  391. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 321–3. ISBN 9783540342588.
  392. "1963: Complementary MOS Circuit Configuration is Invented". Computer History Museum. Retrieved July 6, 2019.
  393. "1964: First Commercial MOS IC Introduced". Computer History Museum. Retrieved July 17, 2019.
  394. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 330. ISBN 9783540342588.
  395. Lambrechts, Wynand; Sinha, Saurabh; Abdallah, Jassem Ahmed; Prinsloo, Jaco (2018). Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques. CRC Press. p. 59. ISBN 9781351248655.
  396. Belzer, Jack; Holzman, Albert G.; Kent, Allen (1978). Encyclopedia of Computer Science and Technology: Volume 10  Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification. CRC Press. p. 402. ISBN 9780824722609.
  397. "Intel® Microprocessor Quick Reference Guide". Intel. Retrieved June 27, 2019.
  398. "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF). Semiconductor History Museum of Japan. Retrieved July 5, 2019.
  399. "0.18-micron Technology". TSMC. Retrieved June 30, 2019.
  400. 65nm CMOS Process Technology
  401. Diefendorff, Keith (15 November 1999). "Hal Makes Sparcs Fly". Microprocessor Report, Volume 13, Number 5.
  402. Cutress, Ian. "Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review". AnandTech. Retrieved June 19, 2019.
  403. "Samsung Shows Industry's First 2-Gigabit DDR2 SDRAM". Samsung Semiconductor. Samsung. September 20, 2004. Retrieved June 25, 2019.
  404. Williams, Martyn (July 12, 2004). "Fujitsu, Toshiba begin 65nm chip trial production". InfoWorld. Retrieved June 26, 2019.
  405. Elpida's presentation at Via Technology Forum 2005 and Elpida 2005 Annual Report
  406. "Fujitsu Introduces World-class 65-Nanometer Process Technology for Advanced Server, Mobile Applications". Archived from the original on September 27, 2011. Retrieved June 20, 2019.
  407. "Intel Now Packs 100 Million Transistors in Each Square Millimeter". IEEE Spectrum: Technology, Engineering, and Science News. March 30, 2017. Retrieved November 14, 2018.
  408. "40nm Technology". TSMC. Retrieved June 30, 2019.
  409. "Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology". Toshiba. February 11, 2009. Retrieved June 21, 2019.
  410. "History: 2010s". SK Hynix. Archived from the original on April 29, 2021. Retrieved July 8, 2019.
  411. Shimpi, Anand Lal (June 8, 2012). "SandForce Demos 19nm Toshiba & 20nm IMFT NAND Flash". AnandTech. Retrieved June 19, 2019.
  412. Schor, David (April 16, 2019). "TSMC Announces 6-Nanometer Process". WikiChip Fuse. Retrieved May 31, 2019.
  413. "16/12nm Technology". TSMC. Retrieved June 30, 2019.
  414. "VLSI 2018: Samsung's 8nm 8LPP, a 10nm extension". WikiChip Fuse. July 1, 2018. Retrieved May 31, 2019.
  415. "Samsung Mass Producing 128Gb 3-bit MLC NAND Flash". Tom's Hardware. April 11, 2013. Archived from the original on June 21, 2019. Retrieved June 21, 2019.
  416. "10nm Technology". TSMC. Retrieved June 30, 2019.
  417. "Can TSMC maintain their process technology lead". SemiWiki. April 29, 2020.
  418. Jones, Scotten (May 3, 2019). "TSMC and Samsung 5nm Comparison". Semiwiki. Retrieved July 30, 2019.
  419. Nenni, Daniel (January 2, 2019). "Samsung vs TSMC 7nm Update". Semiwiki. Retrieved July 6, 2019.
  420. "7nm Technology". TSMC. Retrieved June 30, 2019.
  421. Schor, David (June 15, 2018). "A Look at Intel's 10nm Std Cell as TechInsights Reports on the i3-8121U, finds Ruthenium". WikiChip Fuse. Retrieved May 31, 2019.
  422. "Samsung Foundry update 2019". SemiWiki. August 6, 2019.
  423. Jones, Scotten, 7nm, 5nm and 3nm Logic, current and projected processes
  424. Shilov, Anton. "Samsung Completes Development of 5nm EUV Process Technology". AnandTech. Retrieved May 31, 2019.
  425. "Samsung Foundry Innovations Power the Future of Big Data, AI/ML and Smart, Connected Devices". October 7, 2021.
  426. "Qualcomm confirms Snapdragon 8 Gen 1 is made using Samsung's 4nm process". December 2, 2021.
  427. "List of Snapdragon 8 Gen 1 smartphones available since December 2021". January 14, 2022.
  428. "TSMC Extends Its 5nm Family With A New Enhanced-Performance N4P Node". WikiChip. October 26, 2021.
  429. "MediaTek Launches Dimensity 9000 built on TSMC N4 process". December 16, 2021.
  430. "TSMC Expands Advanced Technology Leadership with N4P Process (press release)". TSMC. October 26, 2021.
  431. Armasu, Lucian (January 11, 2019), "Samsung Plans Mass Production of 3nm GAAFET Chips in 2021", www.tomshardware.com
  432. "Samsung Starts 3nm Production: The Gate-All-Around (GAAFET) Era Begins". AnandTech. June 30, 2022.
  433. "TSMC Plans New Fab for 3nm". EE Times. December 12, 2016. Retrieved September 26, 2019.
  434. "TSMC Roadmap Update: 3nm in Q1 2023, 3nm Enhanced in 2024, 2nm in 2025". www.anandtech.com. October 18, 2021.
  435. "TSMC Introduces N4X Process (press release)". TSMC. December 16, 2021.
  436. "The Future Is Now (blog post)". TSMC. December 16, 2021.
  437. "TSMC Unveils N4X Node". AnandTech. December 17, 2021.
  438. "TSMC roadmap update". AnandTech. April 22, 2022.
  439. Smith, Ryan (June 13, 2022). "Intel 4 Process Node In Detail: 2x Density Scaling, 20% Improved Performance". AnandTech.
  440. Alcorn, Paul (March 24, 2021). "Intel Fixes 7nm, Meteor Lake and Granite Rapids Coming in 2023". Tom's Hardware. Retrieved June 1, 2021.
  441. Cutress, Dr Ian. "Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!". www.anandtech.com. Retrieved July 27, 2021.
  442. Cutress, Dr Ian (February 17, 2022). "Intel Discloses Multi-Generation Xeon Scalable Roadmap: New E-Core Only Xeons in 2024". www.anandtech.com.
  443. "Samsung Electronics Unveils Plans for 1.4nm Process Technology and Investment for Production Capacity at Samsung Foundry Forum 2022". Samsung Global Newsroom. October 4, 2022.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.