Keras

Keras is an open-source library that provides a Python interface for artificial neural networks. Keras acts as an interface for the TensorFlow library.

Keras
Original author(s)François Chollet
Developer(s)ONEIROS
Initial release27 March 2015 (2015-03-27)
Stable release
2.14.0[1] / 12 September 2023 (12 September 2023)
Repository
Written inPython
PlatformCross-platform
TypeFrontend for TensorFlow
LicenseApache 2.0
Websitekeras.io Edit this on Wikidata

Up until version 2.3, Keras supported multiple backends, including TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML.[2][3][4] As of version 2.4, only TensorFlow is supported. However, starting with version 3.0 (including its preview version, Keras Core), Keras will become multi-backend again, supporting TensorFlow, JAX, and PyTorch.[5] Designed to enable fast experimentation with deep neural networks, it focuses on being user-friendly, modular, and extensible. It was developed as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System),[6] and its primary author and maintainer is François Chollet, a Google engineer. Chollet is also the author of the Xception deep neural network model.[7]

Features

Keras contains numerous implementations of commonly used neural-network building blocks such as layers, objectives, activation functions, optimizers, and a host of tools for working with image and text data to simplify programming in deep neural network area. The code is hosted on GitHub, and community support forums include the GitHub issues page, and a Slack channel.

In addition to standard neural networks, Keras has support for convolutional and recurrent neural networks. It supports other common utility layers like dropout, batch normalization, and pooling.[8]

Keras allows users to produce deep models on smartphones (iOS and Android), on the web, or on the Java Virtual Machine.[3] It also allows use of distributed training of deep-learning models on clusters of graphics processing units (GPU) and tensor processing units (TPU).[9]

See also

References

  1. "Release 2.14.0". 12 September 2023. Retrieved 18 September 2023.
  2. "Keras backends". keras.io. Retrieved 2018-02-23.
  3. "Why use Keras?". keras.io. Retrieved 2020-03-22.
  4. "R interface to Keras". keras.rstudio.com. Retrieved 2020-03-22.
  5. "Introducing Keras Core: Keras for TensorFlow, JAX, and PyTorch". Keras.io. Retrieved 11 July 2023.
  6. "Keras Documentation". keras.io. Retrieved 2016-09-18.
  7. Chollet, François (2016). "Xception: Deep Learning with Depthwise Separable Convolutions". arXiv:1610.02357.
  8. "Core - Keras Documentation". keras.io. Retrieved 2018-11-14.
  9. "Using TPUs | TensorFlow". TensorFlow. Archived from the original on 2019-06-04. Retrieved 2018-11-14.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.