Rhombitetraapeirogonal tiling
In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.
| Rhombitetraapeirogonal tiling | |
|---|---|
![]() Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling |
| Vertex configuration | 4.4.∞.4 |
| Schläfli symbol | rr{∞,4} or |
| Wythoff symbol | 4 | ∞ 2 |
| Coxeter diagram | |
| Symmetry group | [∞,4], (*∞42) |
| Dual | Deltoidal tetraapeirogonal tiling |
| Properties | Vertex-transitive |
Constructions
There are two uniform constructions of this tiling, one from [∞,4] or (*∞42) symmetry, and secondly removing the mirror middle, [∞,1+,4], gives a rectangular fundamental domain [∞,∞,∞], (*∞222).
| Name | Rhombitetrahexagonal tiling | |
|---|---|---|
| Image | ![]() |
![]() |
| Symmetry | [∞,4] (*∞42) |
[∞,∞,∞] = [∞,1+,4] (*∞222) |
| Schläfli symbol | rr{∞,4} | t0,1,2,3{∞,∞,∞} |
| Coxeter diagram |
Symmetry
The dual of this tiling, called a deltoidal tetraapeirogonal tiling represents the fundamental domains of (*∞222) orbifold symmetry. Its fundamental domain is a Lambert quadrilateral, with 3 right angles.
Related polyhedra and tiling
| *n42 symmetry mutation of expanded tilings: n.4.4.4 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry [n,4], (*n42) |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | |||||||
| *342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4] |
*∞42 [∞,4] | |||||
| Expanded figures |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | ||||
| Config. | 3.4.4.4 | 4.4.4.4 | 5.4.4.4 | 6.4.4.4 | 7.4.4.4 | 8.4.4.4 | ∞.4.4.4 | ||||
| Rhombic figures config. |
![]() V3.4.4.4 |
![]() V4.4.4.4 |
![]() V5.4.4.4 |
![]() V6.4.4.4 |
![]() V7.4.4.4 |
![]() V8.4.4.4 |
![]() V∞.4.4.4 | ||||
| Paracompact uniform tilings in [∞,4] family | |||||||
|---|---|---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
| {∞,4} | t{∞,4} | r{∞,4} | 2t{∞,4}=t{4,∞} | 2r{∞,4}={4,∞} | rr{∞,4} | tr{∞,4} | |
| Dual figures | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
| V∞4 | V4.∞.∞ | V(4.∞)2 | V8.8.∞ | V4∞ | V43.∞ | V4.8.∞ | |
| Alternations | |||||||
| [1+,∞,4] (*44∞) |
[∞+,4] (∞*2) |
[∞,1+,4] (*2∞2∞) |
[∞,4+] (4*∞) |
[∞,4,1+] (*∞∞2) |
[(∞,4,2+)] (2*2∞) |
[∞,4]+ (∞42) | |
= |
= |
||||||
| h{∞,4} | s{∞,4} | hr{∞,4} | s{4,∞} | h{4,∞} | hrr{∞,4} | s{∞,4} | |
![]() |
![]() |
![]() |
![]() | ||||
| Alternation duals | |||||||
![]() |
![]() |
||||||
| V(∞.4)4 | V3.(3.∞)2 | V(4.∞.4)2 | V3.∞.(3.4)2 | V∞∞ | V∞.44 | V3.3.4.3.∞ | |
See also
Wikimedia Commons has media related to Uniform tiling 4-4-4-i.
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.



































