Order-5 hexagonal tiling
In geometry, the order-5 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,5}.
Order-5 hexagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 65 |
Schläfli symbol | {6,5} |
Wythoff symbol | 5 | 6 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [6,5], (*652) |
Dual | Order-6 pentagonal tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
Related polyhedra and tiling
This tiling is topologically related as a part of sequence of regular tilings with order-5 vertices with Schläfli symbol {n,5}, and Coxeter diagram , progressing to infinity.
Spherical | Hyperbolic tilings | |||||||
---|---|---|---|---|---|---|---|---|
![]() {2,5} ![]() ![]() ![]() ![]() ![]() |
![]() {3,5} ![]() ![]() ![]() ![]() ![]() |
![]() {4,5} ![]() ![]() ![]() ![]() ![]() |
![]() {5,5} ![]() ![]() ![]() ![]() ![]() |
![]() {6,5} ![]() ![]() ![]() ![]() ![]() |
![]() {7,5} ![]() ![]() ![]() ![]() ![]() |
![]() {8,5} ![]() ![]() ![]() ![]() ![]() |
... | ![]() {∞,5} ![]() ![]() ![]() ![]() ![]() |
This tiling is topologically related as a part of sequence of regular tilings with hexagonal faces, starting with the hexagonal tiling, with Schläfli symbol {6,n}, and Coxeter diagram , progressing to infinity.
*n62 symmetry mutation of regular tilings: {6,n} | ||||||||
---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Hyperbolic tilings | ||||||
![]() {6,2} |
![]() {6,3} |
![]() {6,4} |
![]() {6,5} |
![]() {6,6} |
![]() {6,7} |
![]() {6,8} |
... | ![]() {6,∞} |
Uniform hexagonal/pentagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [6,5], (*652) | [6,5]+, (652) | [6,5+], (5*3) | [1+,6,5], (*553) | ||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||
{6,5} | t{6,5} | r{6,5} | 2t{6,5}=t{5,6} | 2r{6,5}={5,6} | rr{6,5} | tr{6,5} | sr{6,5} | s{5,6} | h{6,5} | ||
Uniform duals | |||||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
V65 | V5.12.12 | V5.6.5.6 | V6.10.10 | V56 | V4.5.4.6 | V4.10.12 | V3.3.5.3.6 | V3.3.3.5.3.5 | V(3.5)5 |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
![](../I/Commons-logo.svg.png.webp)
Wikimedia Commons has media related to Order-5 hexagonal tiling.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.