Tetraapeirogonal tiling
In geometry, the tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,4}.
| tetraapeirogonal tiling | |
|---|---|
![]() Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | (4.∞)2 | 
| Schläfli symbol | r{∞,4} or  rr{∞,∞} or  | 
| Wythoff symbol | 2 | ∞ 4 ∞ | ∞ 2  | 
| Coxeter diagram | |
| Symmetry group | [∞,4], (*∞42) [∞,∞], (*∞∞2)  | 
| Dual | Order-4-infinite rhombille tiling | 
| Properties | Vertex-transitive edge-transitive | 
Uniform constructions
    
There are 3 lower symmetry uniform construction, one with two colors of apeirogons, one with two colors of squares, and one with two colors of each:
| Symmetry | (*∞42) [∞,4]  | 
(*∞33) [1+,∞,4] = [(∞,4,4)]  | 
(*∞∞2) [∞,4,1+] = [∞,∞]  | 
(*∞2∞2) [1+,∞,4,1+]  | 
|---|---|---|---|---|
| Coxeter | ||||
| Schläfli | r{∞,4} | r{4,∞}1⁄2 | r{∞,4}1⁄2=rr{∞,∞} | r{∞,4}1⁄4 | 
| Coloring | ![]()  | 
![]()  | 
![]()  | 
![]()  | 
| Dual | ![]()  | 
![]()  | 
![]()  | 
![]()  | 
Symmetry
    
The dual to this tiling represents the fundamental domains of *∞2∞2 symmetry group. The symmetry can be doubled by adding mirrors on either diagonal of the rhombic domains, creating *∞∞2 and *∞44 symmetry.
Related polyhedra and tiling
    
| *n42 symmetry mutations of quasiregular tilings: (4.n)2 | ||||||||
|---|---|---|---|---|---|---|---|---|
| Symmetry *4n2 [n,4]  | 
Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||
| *342 [3,4]  | 
*442 [4,4]  | 
*542 [5,4]  | 
*642 [6,4]  | 
*742 [7,4]  | 
*842 [8,4]...  | 
*∞42 [∞,4]  | 
  [ni,4]  | |
| Figures | ![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
|
| Config. | (4.3)2 | (4.4)2 | (4.5)2 | (4.6)2 | (4.7)2 | (4.8)2 | (4.∞)2 | (4.ni)2 | 
| Paracompact uniform tilings in [∞,4] family | |||||||
|---|---|---|---|---|---|---|---|
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |
| {∞,4} | t{∞,4} | r{∞,4} | 2t{∞,4}=t{4,∞} | 2r{∞,4}={4,∞} | rr{∞,4} | tr{∞,4} | |
| Dual figures | |||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |
| V∞4 | V4.∞.∞ | V(4.∞)2 | V8.8.∞ | V4∞ | V43.∞ | V4.8.∞ | |
| Alternations | |||||||
| [1+,∞,4] (*44∞)  | 
[∞+,4] (∞*2)  | 
[∞,1+,4] (*2∞2∞)  | 
[∞,4+] (4*∞)  | 
[∞,4,1+] (*∞∞2)  | 
[(∞,4,2+)] (2*2∞)  | 
[∞,4]+ (∞42)  | |
=  | 
=  | 
||||||
| h{∞,4} | s{∞,4} | hr{∞,4} | s{4,∞} | h{4,∞} | hrr{∞,4} | s{∞,4} | |
![]()  | 
![]()  | 
![]()  | 
![]()  | ||||
| Alternation duals | |||||||
![]()  | 
![]()  | 
||||||
| V(∞.4)4 | V3.(3.∞)2 | V(4.∞.4)2 | V3.∞.(3.4)2 | V∞∞ | V∞.44 | V3.3.4.3.∞ | |
| Paracompact uniform tilings in [∞,∞] family | ||||||
|---|---|---|---|---|---|---|
= =  | 
= =  | 
= =  | 
= =  | 
= =  | 
=  | 
=  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| {∞,∞} | t{∞,∞} | r{∞,∞} | 2t{∞,∞}=t{∞,∞} | 2r{∞,∞}={∞,∞} | rr{∞,∞} | tr{∞,∞} | 
| Dual tilings | ||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| V∞∞ | V∞.∞.∞ | V(∞.∞)2 | V∞.∞.∞ | V∞∞ | V4.∞.4.∞ | V4.4.∞ | 
| Alternations | ||||||
| [1+,∞,∞] (*∞∞2)  | 
[∞+,∞] (∞*∞)  | 
[∞,1+,∞] (*∞∞∞∞)  | 
[∞,∞+] (∞*∞)  | 
[∞,∞,1+] (*∞∞2)  | 
[(∞,∞,2+)] (2*∞∞)  | 
[∞,∞]+ (2∞∞)  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |
| h{∞,∞} | s{∞,∞} | hr{∞,∞} | s{∞,∞} | h2{∞,∞} | hrr{∞,∞} | sr{∞,∞} | 
| Alternation duals | ||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | |||
| V(∞.∞)∞ | V(3.∞)3 | V(∞.4)4 | V(3.∞)3 | V∞∞ | V(4.∞.4)2 | V3.3.∞.3.∞ | 
See also
    
Wikimedia Commons has media related to Uniform tiling 4-i-4-i.
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, "The Hyperbolic Archimedean Tessellations")
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
 
External links
    
    
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.














































