How to find the angles of external rays that land on the p/q root point on the boundary of Mandelbrot set's main cardioid ?
First check of p/q is irreducible
- wakes
 Wakes near the period 1 continent Wakes near the period 1 continent
 Wakes_along_the_main_antenna Wakes_along_the_main_antenna
 wakes up to period 10 wakes up to period 10
- rotation, winding numbers and regular star polygons
 
 
 
 
irreducible fraction
/* 
gcc i.c -Wall
./a.out
*/
#include <stdio.h>
/*
https://stackoverflow.com/questions/19738919/gcd-function-for-c
The GCD function uses Euclid's Algorithm. 
It computes A mod B, then swaps A and B with an XOR swap.
*/
int gcd(int a, int b)
{
    int temp;
    while (b != 0)
    {
        temp = a % b;
        a = b;
        b = temp;
    }
    return a;
}
int main (){
	// internal angle = n/m  in turns
	int n;  // numerator
	int d;  // denominator
 	int dMax = 17;  
 
 	for (d = 2; d <= dMax; ++d )
   		for (n = 1; n < d; ++n )
     			if (gcd(n,d)==1 ){ 
     				     			
         			printf("n/d = %d/%d\n", n,d);	// irreducible fraction  
       			} 
   
	return 0;       
}
Output:
n/d = 1/2 n/d = 1/3 n/d = 2/3 n/d = 1/4 n/d = 3/4 n/d = 1/5 n/d = 2/5 n/d = 3/5 n/d = 4/5 n/d = 1/6 n/d = 5/6 n/d = 1/7 n/d = 2/7 n/d = 3/7 n/d = 4/7 n/d = 5/7 n/d = 6/7 n/d = 1/8 n/d = 3/8 n/d = 5/8 n/d = 7/8 n/d = 1/9 n/d = 2/9 n/d = 4/9 n/d = 5/9 n/d = 7/9 n/d = 8/9 n/d = 1/10 n/d = 3/10 n/d = 7/10 n/d = 9/10 n/d = 1/11 n/d = 2/11 n/d = 3/11 n/d = 4/11 n/d = 5/11 n/d = 6/11 n/d = 7/11 n/d = 8/11 n/d = 9/11 n/d = 10/11 n/d = 1/12 n/d = 5/12 n/d = 7/12 n/d = 11/12 n/d = 1/13 n/d = 2/13 n/d = 3/13 n/d = 4/13 n/d = 5/13 n/d = 6/13 n/d = 7/13 n/d = 8/13 n/d = 9/13 n/d = 10/13 n/d = 11/13 n/d = 12/13 n/d = 1/14 n/d = 3/14 n/d = 5/14 n/d = 9/14 n/d = 11/14 n/d = 13/14 n/d = 1/15 n/d = 2/15 n/d = 4/15 n/d = 7/15 n/d = 8/15 n/d = 11/15 n/d = 13/15 n/d = 14/15 n/d = 1/16 n/d = 3/16 n/d = 5/16 n/d = 7/16 n/d = 9/16 n/d = 11/16 n/d = 13/16 n/d = 15/16 n/d = 1/17 n/d = 2/17 n/d = 3/17 n/d = 4/17 n/d = 5/17 n/d = 6/17 n/d = 7/17 n/d = 8/17 n/d = 9/17 n/d = 10/17 n/d = 11/17 n/d = 12/17 n/d = 13/17 n/d = 14/17 n/d = 15/17 n/d = 16/17
notes
external angles of p/q-wake:
- have period q under doubling map. It is the same as period of landing point ( = root point )
- length of periodic part of binary expansion is q
- preperiod under doubling map is zero
Roots are landing points of parameter rays with periodic angles, while Misiurewicz points have preperiodic external angles.
Combinatorial algorithm = Devaney's method
Devaney's method[1] for finding external angles of primary buds[2][3]
Steps :
- start with rational rotation angle,
- orbit of rotation angle under circle map
- translation of orbit into itinerary
- conversion of itinerary into binary expansion with repeating binary fraction
- conversion of binary expansion to binary fraction
- conversion to decimal fraction
Input : rational rotation angle
Outpout : external angle ( decimal or binary fraction )
The code
C++
Here is C++ code from the program Mandel by Wolf Jung :
// mndcombi.cpp  by Wolf Jung (C) 2007-2015, part of Mandel 5.13, 
qulonglong mndAngle::wake(int k, int r, qulonglong &n)
{  if (k <= 0 || k >= r || r > 64) return 0LL;
   qulonglong d = 1LL; 
   int j, s = 0; 
   n = 1LL;
   for (j = 1; j < r; j++)
   {  s -= k; if (s < 0) s += r; if (!s) return 0LL;
      if (s > r - k) n += d << j;
   }
   //
   d <<= (r - 1); d--; d <<= 1; d++; //2^r - 1 for r <= 64
   return d;
}
C GMP and MPFR
/*
------- Git -----------------
cd existing_folder
git init
git remote add origin git@gitlab.com:adammajewski/wake_gmp.git
git add .
git commit -m ""
git push -u origin master
-------------------------------
?? http://stackoverflow.com/questions/2380415/how-to-cut-a-mpz-t-into-two-parts-using-gmp-lib-on-c
   
   to compile from console:
   gcc w.c -lgmp -lmpfr -Wall
    to run from console :
   ./a.out
   tested on Ubuntu 14.04 LTS
uiIADenominator = 89 
Using MPFR-3.1.2-p3 with GMP-5.1.3 with precision = 200 bits 
internal angle = 34/89
first external angle : 
period = denominator of internal angle = 89
external angle as a decimal fraction = 179622968672387565806504265/618970019642690137449562111 = 179622968672387565806504265 /( 2^89 - 1) 
External Angle as a floating point decimal number =  2.9019655713870868535821260055542440298749779423213948304299730531995503353103626302473331181359966368582651105245850405837027542373052381532777325121338632071561064451614697645709384232759475708007812e-1
external angle as a binary rational (string) : 1001010010010100101001001010010010100101001001010010100100101001001010010100100101001001/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
external angle as a binary floating number in exponential form =0.10010100100101001010010010100100101001010010010100101001001010010010100101001001010010010100101001001010010100100101001001010010100100101001010010010100100101001010010010100100101001010010010100101001*2^-1
external angle as a binary floating number in periodic form =0.(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)
                                                             .(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)
*/
#include <stdlib.h> // malloc
#include <stdio.h>
#include <gmp.h>  // for rational numbers 
#include <mpfr.h> // for floating point mumbers
 // rotation map 
//the number  n  is always increased by n0 modulo d
// input :  op = n/d ( rational number ) and n0 ( integer)
//  n = (n + n0 ) % d
// d = d
// output = rop = n/d
void mpq_rotation(mpq_t rop, const mpq_t op, const mpz_t n0)
{
  
  mpz_t n; // numerator
  mpz_t d; // denominator
  mpz_inits( n, d, NULL);
 
  //  
  mpq_get_num (n, op); // 
  mpq_get_den (d, op);
  
 
  // n = (n + n0 ) % d
  mpz_add(n, n, n0); 
  mpz_mod( n, n, d);
  
      
  // output
  mpq_set_num(rop, n);
  mpq_set_den(rop, d);
    
  mpz_clears( n, d, NULL);
}
void mpq_wake(mpq_t rop, mpq_t op)
{
   
  // arbitrary precision variables from GMP library
   mpz_t  n0 ; // numerator of q
   mpz_t  nc;
   mpz_t  n;
   mpz_t  d ; // denominator of q
   mpz_t  m; // 2^i
   mpz_t  num ; // numerator of rop
   mpz_t  den ; // denominator of rop
   long long int i;
   unsigned long int base = 2;
   unsigned long int id;
   int cmp;
   mpz_inits(n, n0,nc,d,num,den,m, NULL);
   mpq_get_num(n0,op);
   mpq_get_den(d,op);
   id = mpz_get_ui(d);
   //  if (n <= 0 || n >= d ) error !!!! bad input
   mpz_sub(nc, d, n0); // nc = d - n0
   mpz_set(n, n0);   
   mpz_set_ui(num, 0);
   // rop  
    // num = numerator(rop)
    
   
   // denominator = den(rop) = (2^i) -1 
   mpz_ui_pow_ui(den, base, id) ;  // den = base^id
   mpz_sub_ui(den, den, 1);   // den = den-1
   
  // numerator   
     for (i=0; i<id ; i++){  
       
       mpz_set_ui(m, 0);
       cmp = mpz_cmp(n,nc);// Compare op1 and op2. Return a positive value if op1 > op2, zero if op1 = op2, or a negative value if op1 < op2.
       if ( cmp>0 ) {
          mpz_ui_pow_ui(m, 2, id-i-1); // m = 2^(id-i   )
          mpz_add(num, num, m); // num = num + m
          if (mpz_cmp(num, den) >0) mpz_mod( num, num, den); // num = num % d ; if num==d gives 0
          //gmp_printf("s = 1");
           }
        // else gmp_printf("s = 0");
       //gmp_printf (" i = %ld internal angle = %Zd / %Zd ea = %Zd / %Zd ; m = %Zd \n", i, n, d, num, den, m);
        // n = (n + n0 ) % d = rotation 
       mpz_add(n, n, n0); 
       if (mpz_cmp(n, d)>0) mpz_mod( n, n, d);
       //
       
          
        // 
      }
    
   // rop = external angle 
   mpq_set_num(rop,num);
   mpq_set_den(rop,den);
   mpq_canonicalize (rop); // It is the responsibility of the user to canonicalize the assigned variable before any arithmetic operations are performed on that variable.
    
   // clear memory
   mpz_clears(n, n0, nc, d, num,den, m, NULL);
}
/*
http://stackoverflow.com/questions/9895216/remove-character-from-string-in-c
"The idea is to keep a separate read and write pointers (pr for reading and pw for writing), 
always advance the reading pointer, and advance the writing pointer only when it's not pointing to a given character."
modified
 remove first length2rmv chars and after that take only length2stay chars from input string
 output = input string 
*/
void extract_str(char* str, unsigned int length2rmv, unsigned long int length2stay) {
    // separate read and write pointers 
    char *pr = str; // read pointer
    char *pw = str; // write pointer
    int i =0; // index
    while (*pr) {
        if (i>length2rmv-1 && i <length2rmv+length2stay)
          pw += 1; // advance the writing pointer only when 
        pr += 1;  // always advance the reading pointer
        *pw = *pr;    
        i +=1;
    }
    *pw = '\0';
}
int main ()
{	
	
         // notation : 
        //number type : s = string ; q = rational ; z = integer, f = floating point
        // base : b = binary ; d = decimal
        
        char *sqdInternalAngle = "13/34";
        mpq_t qdInternalAngle;   // internal angle = rational number q = n/d
        mpz_t den;  
        unsigned long int uiIADenominator;
        
       
        mpq_t  qdExternalAngle;   // rational number q = n/d
        char  *sqbExternalAngle;
        mpfr_t  fdExternalAngle ;  // 
        char  *sfbExternalAngle; // 
        
        mp_exp_t exponent ; // holds the exponent for the result string
        mpz_t zdEANumerator;
        mpz_t zdEADenominator;
        mpfr_t EANumerator;
        mpfr_t EADenominator;
        mpfr_prec_t p = 200; // in bits , should be > denominator of internal angle
         mpfr_set_default_prec (p); // but previously initialized variables are unaffected.
        //mpfr_set_default_prec (precision);
        // init variables 
        //mpf_init(fdExternalAngle);
        mpz_inits(den, zdEANumerator,zdEADenominator, NULL);
        mpq_inits (qdExternalAngle, qdInternalAngle, NULL); //
        mpfr_inits(fdExternalAngle, EANumerator, EADenominator, NULL);
        // set variables
        mpq_set_str(qdInternalAngle, sqdInternalAngle, 10); // string is an internal angle
        mpq_canonicalize (qdInternalAngle); // It is the responsibility of the user to canonicalize the assigned variable before any arithmetic operations are performed on that variable.
        mpq_get_den(den,qdInternalAngle); 
        uiIADenominator = mpz_get_ui(den);
        printf("uiIADenominator = %lu \n", uiIADenominator);
        if ( p < uiIADenominator) printf("increase precision !!!!\n");         
        mpfr_printf("Using MPFR-%s with GMP-%s with precision = %u bits \n", mpfr_version, gmp_version, (unsigned int) p);
        //        
        mpq_wake(qdExternalAngle, qdInternalAngle); // internal -> external
        mpq_get_num(zdEANumerator  ,qdExternalAngle);
        mpq_get_den(zdEADenominator,qdExternalAngle); 
        // conversions
        mpfr_set_z (EANumerator,   zdEANumerator,   GMP_RNDN);
        mpfr_set_z (EADenominator, zdEADenominator, GMP_RNDN);
        sqbExternalAngle = mpq_get_str (NULL, 2, qdExternalAngle); // rational number = fraction : from decimal to binary
        
        mpfr_div (fdExternalAngle, EANumerator, EADenominator, GMP_RNDN);
        sfbExternalAngle = (char*)malloc((sizeof(char) * uiIADenominator*2*4) + 3);
        // mpfr_get_str (char *str, mpfr_exp_t *expptr, int b, size_t n, mpfr_t op, mpfr_rnd_t rnd)
        if (sfbExternalAngle==NULL ) {printf("sfbExternalAngle error \n"); return 1;}
        mpfr_get_str(sfbExternalAngle, &exponent, 2,200, fdExternalAngle, GMP_RNDN);
        // print
        gmp_printf ("internal angle = %Qd\n", qdInternalAngle); // 
        printf("first external angle : \n");
        gmp_printf ("period = denominator of internal angle = %Zd\n", den); //
        gmp_printf ("external angle as a decimal fraction = %Qd = %Zd /( 2^%Zd - 1) \n", qdExternalAngle, zdEANumerator, den); // 
        printf ("External Angle as a floating point decimal number =  ");
        mpfr_out_str (stdout, 10, p, fdExternalAngle, MPFR_RNDD); putchar ('\n');
        gmp_printf ("external angle as a binary rational (string) : %s \n", sqbExternalAngle); // 
        
        printf ("external angle as a binary floating number in exponential form =0.%s*%d^%ld\n", sfbExternalAngle, 2, exponent); 
        extract_str(sfbExternalAngle,  uiIADenominator+exponent, uiIADenominator); 
        printf ("external angle as a binary floating number in periodic form =0.(%s)\n", sfbExternalAngle);
        // clear memory
        //mpf_clear(fdExternalAngle);
        mpq_clears(qdExternalAngle, qdInternalAngle, NULL);
        mpz_clears(den, zdEANumerator, zdEADenominator, NULL);
        mpfr_clears(fdExternalAngle, EANumerator, EADenominator, NULL);
        free(sfbExternalAngle);
        return 0;
}
Examples
1/2
One can check with program Mandel :
The 1/2-wake of the main cardioid is bounded by the parameter rays with the angles 1/3 or p01 and 2/3 or p10 .
1/3
Orbit of rational angle 3/7 ( and position in subintervals):
1 / 3 = 0 2 / 3 = 0 0 / 3 = 1
so intinerary = 001
first external angle = 001 = 1 / 7
One can check it with program Mandel by Wolf Jung : the 1/3-wake of the main cardioid is bounded by the parameter rays with the angles
- 1/7 or p001
- 2/7 or p010
note that
1/7 = 0.(001) = 0.(142857)= 0.1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428...
1/4
The 1/4-wake of the main cardioid is bounded by the parameter rays with the angles 1/15 or p0001 and 2/15 or p0010 .
n/5
There are 4 period 5 wakes:
- 1/5
- 2/5
- 3/5
- 4/5
Check it with Mandel by Wolf Jung :
The 1/5-wake of the main cardioid is bounded by the parameter rays with the angles :
- 1/31 or p00001
- 2/31 or p00010
The 4/5-wake of the main cardioid is bounded by the parameter rays with the angles
- 29/31 or p11101
- 30/31 or p11110
n/17
Angled internal address
One can check it with Mandel by Wolf Jung:
The 1/17-wake of the main cardioid is bounded by the parameter rays with the angles * 1/131071 or p00000000000000001 * 2/131071 or p00000000000000010
- .(00000000000000001)
- .(00000000000000010)
1/25
uiIADenominator = 25 Using MPFR-3.1.5 with GMP-6.1.1 with precision = 200 bits internal angle = 1/25 first external angle : period = denominator of internal angle = 25 external angle as a decimal fraction = 1/33554431 = 1 /( 2^25 - 1) External Angle as a floating point decimal number = 2.9802323275873758669905622896719661257256902970579355078320375103410059138021557873907862143745145987726127630324761942815747600646073471636075786857847163330961076713939572483194617724677755177253857e-8 external angle as a binary rational (string) : 1/1111111111111111111111111 external angle as a binary floating number in exponential form =0.10000000000000000000000001000000000000000000000000100000000000000000000000010000000000000000000000001000000000000000000000000100000000000000000000000010000000000000000000000001000000000000000000000001*2^-24 external angle as a binary floating number in periodic form =0.(0000000000000000000000001)
So 1/25-wake of the main cardioid is bounded by the parameter rays with the angles :
- 0.0000000298 = 1/33554431 = 1 /( 2^25 - 1) = 0.(0000000000000000000000001)
- 0,0000000596 = 2/33554431 = 2 /( 2^25 - 1) = 0.(0000000000000000000000010)
One can check it with Mandel
The angle 1/33554431 or p0000000000000000000000001 has preperiod = 0 and period = 25. The conjugate angle is 2/33554431 or p0000000000000000000000010 . The kneading sequence is AAAAAAAAAAAAAAAAAAAAAAAA* and the internal address is 1-25 . The corresponding parameter rays are landing at the root of a satellite component of period 25. It is bifurcating from period 1. Do you want to draw the rays and to shift c to the corresponding center?
The center is :
c = 0.265278321904606 +0.003712059989878 i period = 25
3/7



Divide interval ( circle):
into 2 subintervals ( lower partition) :
Orbit of rational angle 3/7 ( and position in subintervals):
3 / 7 = 0 6 / 7 = 1 2 / 7 = 0 5 / 7 = 1 1 / 7 = 0 4 / 7 = 0 0 / 7 = 1
So itinerary is :
 
One can convert it to number :
One can check it with program Mandel by Wolf Jung :
The 3/7-wake of the main cardioid is bounded by the parameter rays with the angles 41/127 or p0101001 and 42/127 or p0101010 .
root point :
c = -0.606356884415893 +0.412399740175787 i
Orbit of 41/127 under doubling map modulo 1 computed with this program ( exponent = 7 and mpz_init_set_ui(n, 41); :
41/127 82/127 37/127 74/127 21/127 42/127 84/127
1/31

The 1/31-wake of the main cardioid
- is bounded by the parameter rays with the angles 1/2147483647 or p0000000000000000000000000000001 and 2/2147483647 or p0000000000000000000000000000010
- root point : c = 0.260025517721190 +0.002060296266000 i
- center c = 0.260025517721190 +0.002060296266000 i
- principal Misiurewicz point c = 0.259995759918769  +0.001610271381965*i 
- has preperiod = 31 , period = 1
- is a landing point for 31 external rays 
- 2147483649/4611686016279904256 = 0000000000000000000000000000001p0000000000000000000000000000010 = .0000000000000000000000000000001(0000000000000000000000000000010)
 
 
- the biggest baby Mandelbrot set has the kneading sequence AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB* corresponds to the internal address 1-31-32 . The period is 32. The smallest angles are 3/4294967295 = 0.(00000000000000000000000000000011) and 4/4294967295 = 0.(00000000000000000000000000000100)
On the dynamical plane :
- The angle
13/34

Output from program Mandel by Wolf Jung :
The 13/34-wake of the main cardioid is bounded by the parameter rays with the angles 4985538889/17179869183 or p0100101001001010010100100101001001 and 4985538890/17179869183 or p0100101001001010010100100101001010 .
s = 0 i = 0 internal angle = 13 / 34 ea = 0 / 17179869183 ; m = 0 s = 1 i = 1 internal angle = 26 / 34 ea = 4294967296 / 17179869183 ; m = 4294967296 s = 0 i = 2 internal angle = 5 / 34 ea = 4294967296 / 17179869183 ; m = 0 s = 0 i = 3 internal angle = 18 / 34 ea = 4294967296 / 17179869183 ; m = 0 s = 1 i = 4 internal angle = 31 / 34 ea = 4831838208 / 17179869183 ; m = 536870912 s = 0 i = 5 internal angle = 10 / 34 ea = 4831838208 / 17179869183 ; m = 0 s = 1 i = 6 internal angle = 23 / 34 ea = 4966055936 / 17179869183 ; m = 134217728 s = 0 i = 7 internal angle = 2 / 34 ea = 4966055936 / 17179869183 ; m = 0 s = 0 i = 8 internal angle = 15 / 34 ea = 4966055936 / 17179869183 ; m = 0 s = 1 i = 9 internal angle = 28 / 34 ea = 4982833152 / 17179869183 ; m = 16777216 s = 0 i = 10 internal angle = 7 / 34 ea = 4982833152 / 17179869183 ; m = 0 s = 0 i = 11 internal angle = 20 / 34 ea = 4982833152 / 17179869183 ; m = 0 s = 1 i = 12 internal angle = 33 / 34 ea = 4984930304 / 17179869183 ; m = 2097152 s = 0 i = 13 internal angle = 12 / 34 ea = 4984930304 / 17179869183 ; m = 0 s = 1 i = 14 internal angle = 25 / 34 ea = 4985454592 / 17179869183 ; m = 524288 s = 0 i = 15 internal angle = 4 / 34 ea = 4985454592 / 17179869183 ; m = 0 s = 0 i = 16 internal angle = 17 / 34 ea = 4985454592 / 17179869183 ; m = 0 s = 1 i = 17 internal angle = 30 / 34 ea = 4985520128 / 17179869183 ; m = 65536 s = 0 i = 18 internal angle = 9 / 34 ea = 4985520128 / 17179869183 ; m = 0 s = 1 i = 19 internal angle = 22 / 34 ea = 4985536512 / 17179869183 ; m = 16384 s = 0 i = 20 internal angle = 1 / 34 ea = 4985536512 / 17179869183 ; m = 0 s = 0 i = 21 internal angle = 14 / 34 ea = 4985536512 / 17179869183 ; m = 0 s = 1 i = 22 internal angle = 27 / 34 ea = 4985538560 / 17179869183 ; m = 2048 s = 0 i = 23 internal angle = 6 / 34 ea = 4985538560 / 17179869183 ; m = 0 s = 0 i = 24 internal angle = 19 / 34 ea = 4985538560 / 17179869183 ; m = 0 s = 1 i = 25 internal angle = 32 / 34 ea = 4985538816 / 17179869183 ; m = 256 s = 0 i = 26 internal angle = 11 / 34 ea = 4985538816 / 17179869183 ; m = 0 s = 1 i = 27 internal angle = 24 / 34 ea = 4985538880 / 17179869183 ; m = 64 s = 0 i = 28 internal angle = 3 / 34 ea = 4985538880 / 17179869183 ; m = 0 s = 0 i = 29 internal angle = 16 / 34 ea = 4985538880 / 17179869183 ; m = 0 s = 1 i = 30 internal angle = 29 / 34 ea = 4985538888 / 17179869183 ; m = 8 s = 0 i = 31 internal angle = 8 / 34 ea = 4985538888 / 17179869183 ; m = 0 s = 0 i = 32 internal angle = 21 / 34 ea = 4985538888 / 17179869183 ; m = 0 s = 1 i = 33 internal angle = 34 / 34 ea = 4985538889 / 17179869183 ; m = 1 internal angle = 13/34 period = denominator of internal angle = 34 external angle as a decimal fraction = 4985538889/17179869183 = 4985538889 /( 2^34 - 1) external angle as a binary rational (string) : 100101001001010010100100101001001/1111111111111111111111111111111111 external angle as a binary floating number in exponential form =0.1001010010010100101001001010010010100101001001010010100100101001*2^-1 external angle as a binary floating number in periodic form =0.(0100101001001010010100100101001)
34/89
Using GMP-5.1.3 with precision = 256 bits 
internal angle = 34/89
period = denominator of internal angle = 89
external angle as a decimal fraction = 179622968672387565806504265/618970019642690137449562111
external angle as a binary rational (string) : 1001010010010100101001001010010010100101001001010010100100101001001010010100100101001001/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
external angle as a binary floating number in exponential form =0.10010100100101001010010010100100101001010010010100101001001010010010100101001001010010010100101001001010010100100101001001010010100100101001010010010100100101001010010010100100101001010010010100101001001010010010100101001001010010100100101001001010010100101*2^-1
external angle as a binary floating number in periodic form =0.(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)
1/128
uiIADenominator = 128 Using MPFR-4.0.2 with GMP-6.2.0 with precision = 200 bits internal angle = 1/128 first external angle : period = denominator of internal angle = 128 external angle as a decimal fraction = 1/340282366920938463463374607431768211455 = 1 /( 2^128 - 1) External Angle as a floating point decimal number = 2.9387358770557187699218413430556141945553000604853132483972656175588435482079339324933425313850237034701685918031624270579715075034722882265605472939461496635969950989468319466936530037770580747746862e-39 external angle as a binary rational (string) : 1/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 external angle as a binary floating number in exponential form =0.10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000*2^-127 external angle as a binary floating number in periodic form =0.(00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)
89/268

Using GMP-5.1.3 with precision = 320 bits 
internal angle = 89/268
period = denominator of internal angle = 268
external angle as a decimal fraction = 67754913930863876636420964942226524366713408170066250043659752013773168429311121/474284397516047136454946754595585670566993857190463750305618264096412179005177855
external angle as a binary rational (string) : 0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001
/1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
external angle as a binary floating number in exponential form =0.10010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001
001001001001001001001001001001001001001001001001001001*2^-2
external angle as a binary floating number in periodic form =
0.(0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001)