Solar eclipse of November 25, 2030
A total solar eclipse will occur on Monday, November 25, 2030. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
Solar eclipse of November 25, 2030 | |
---|---|
Map | |
Type of eclipse | |
Nature | Total |
Gamma | −0.3867 |
Magnitude | 1.0468 |
Maximum eclipse | |
Duration | 224 sec (3 m 44 s) |
Coordinates | 43.6°S 71.2°E |
Max. width of band | 169 km (105 mi) |
Times (UTC) | |
Greatest eclipse | 6:51:37 |
References | |
Saros | 133 (46 of 72) |
Catalog # (SE5000) | 9576 |
Images
Animated path
Related eclipses
Solar eclipses 2029–2032
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
Note: Partial solar eclipses on January 14, 2029 and July 11, 2029 occur on the previous lunar year eclipse set.
Solar eclipse series sets from 2029–2032 | ||||
---|---|---|---|---|
Descending node | Ascending node | |||
118 | June 12, 2029 Partial |
123 | December 5, 2029 Partial | |
128 | June 1, 2030 Annular |
133 | November 25, 2030 Total | |
138 | May 21, 2031 Annular |
143 | November 14, 2031 Hybrid | |
148 | May 9, 2032 Annular |
153 | November 3, 2032 Partial |
Saros 133
Solar Saros 133, repeating every 18 years, 11 days, contains 72 events. The series started with a partial solar eclipse on July 13, 1219. It contains annular eclipses from November 20, 1435, through January 13, 1526, with a hybrid eclipse on January 24, 1544. It has total eclipses from February 3, 1562, through June 21, 2373. The series ends at member 72 as a partial eclipse on September 5, 2499. The longest duration of totality was 6 minutes, 49.97 seconds on August 7, 1850.[2] The total eclipses of this saros series are getting shorter and farther south with each iteration. All eclipses in this series occurs at the Moon’s ascending node.
Series members 30–56 occur between 1742 and 2211 | ||
---|---|---|
30 | 31 | 32 |
June 3, 1742 | June 13, 1760 | June 24, 1778 |
33 | 34 | 35 |
July 4, 1796 | July 17, 1814 | July 27, 1832 |
36 | 37 | 38 |
August 7, 1850 | August 18, 1868 |
August 29, 1886 |
39 | 40 | 41 |
September 9, 1904 |
September 21, 1922 |
October 1, 1940 |
42 | 43 | 44 |
October 12, 1958 |
October 23, 1976 |
November 3, 1994 |
45 | 46 | 47 |
November 13, 2012 |
November 25, 2030 |
December 5, 2048 |
48 | 49 | 50 |
December 17, 2066 |
December 27, 2084 |
January 8, 2103 |
51 | 52 | 53 |
January 19, 2121 |
January 30, 2139 |
February 9, 2157 |
54 | 55 | 56 |
February 21, 2175 |
March 3, 2193 |
March 15, 2211 |
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events, progressing from south to north between July 1, 2000 and July 1, 2076 | ||||
---|---|---|---|---|
July 1–2 | April 19–20 | February 5–7 | November 24–25 | September 12–13 |
117 | 119 | 121 | 123 | 125 |
July 1, 2000 |
April 19, 2004 |
February 7, 2008 |
November 25, 2011 |
September 13, 2015 |
127 | 129 | 131 | 133 | 135 |
July 2, 2019 |
April 20, 2023 |
February 6, 2027 |
November 25, 2030 |
September 12, 2034 |
137 | 139 | 141 | 143 | 145 |
July 2, 2038 |
April 20, 2042 |
February 5, 2046 |
November 25, 2049 |
September 12, 2053 |
147 | 149 | 151 | 153 | 155 |
July 1, 2057 |
April 20, 2061 |
February 5, 2065 |
November 24, 2068 |
September 12, 2072 |
157 | 159 | 161 | 163 | 165 |
July 1, 2076 |
References
- van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- http://eclipse.gsfc.nasa.gov/SEsaros/SEsaros133.html
External links
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC