Solar eclipse of December 13, 1936
An annular solar eclipse occurred on December 13–14, 1936. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Australia, New Zealand on December 14 (Monday), and Oeno Island in Pitcairn Islands on December 13 (Sunday).
Solar eclipse of December 13, 1936 | |
---|---|
Map | |
Type of eclipse | |
Nature | Annular |
Gamma | −0.2493 |
Magnitude | 0.9349 |
Maximum eclipse | |
Duration | 445 sec (7 m 25 s) |
Coordinates | 37.8°S 172.6°W |
Max. width of band | 251 km (156 mi) |
Times (UTC) | |
Greatest eclipse | 23:28:12 |
References | |
Saros | 131 (46 of 70) |
Catalog # (SE5000) | 9368 |
Related eclipses
Solar eclipses of 1935–1938
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
Solar eclipse series sets from 1935–1938 | ||||
---|---|---|---|---|
Ascending node | Descending node | |||
111 | January 5, 1935 Partial |
116 | June 30, 1935 Partial | |
121 | December 25, 1935 Annular |
126 | June 19, 1936 Total | |
131 | December 13, 1936 Annular |
136 | June 8, 1937 Total | |
141 | December 2, 1937 Annular |
146 | May 29, 1938 Total | |
151 | November 21, 1938 Partial |
Saros 131
It is a part of Saros cycle 131, repeating every 18 years, 11 days, containing 70 events. The series started with partial solar eclipse on August 1, 1125. It contains total eclipses from March 27, 1522 through May 30, 1612 and hybrid eclipses from June 10, 1630 through July 24, 1702, and annular eclipses from August 4, 1720 through June 18, 2243. The series ends at member 70 as a partial eclipse on September 2, 2369. The longest duration of totality was only 58 seconds on May 30, 1612. All eclipses in this series occurs at the Moon’s ascending node.
Series members 33–70 occur between 1702 and 2369 | ||
---|---|---|
33 | 34 | 35 |
July 24, 1702 |
August 4, 1720 |
August 15, 1738 |
36 | 37 | 38 |
August 25, 1756 |
September 6, 1774 |
September 16, 1792 |
39 | 40 | 41 |
September 28, 1810 |
October 9, 1828 |
October 20, 1846 |
42 | 43 | 44 |
October 30, 1864 |
November 10, 1882 |
November 22, 1900 |
45 | 46 | 47 |
December 3, 1918 |
December 13, 1936 |
December 25, 1954 |
48 | 49 | 50 |
January 4, 1973 |
January 15, 1991 |
January 26, 2009 |
51 | 52 | 53 |
February 6, 2027 |
February 16, 2045 |
February 28, 2063 |
54 | 55 | 56 |
March 10, 2081 |
March 21, 2099 |
April 2, 2117 |
57 | 58 | 59 |
April 13, 2135 |
April 23, 2153 |
May 5, 2171 |
60 | 61 | 62 |
May 15, 2189 |
May 27, 2207 |
June 6, 2225 |
63 | 64 | 65 |
June 18, 2243 |
June 28, 2261 |
July 9, 2279 |
66 | 67 | 68 |
July 20, 2297 |
August 1, 2315 |
August 11, 2333 |
69 | 70 | |
August 22, 2351 |
September 2, 2369 |
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Inex series members between 1901 and 2100: | ||
---|---|---|
January 3, 1908 (Saros 130) |
December 13, 1936 (Saros 131) |
November 23, 1965 (Saros 132) |
November 3, 1994 (Saros 133) |
October 14, 2023 (Saros 134) |
September 22, 2052 (Saros 135) |
September 3, 2081 (Saros 136) |
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2100 | |||
---|---|---|---|
December 21, 1805 (Saros 119) |
November 19, 1816 (Saros 120) |
October 20, 1827 (Saros 121) | |
September 18, 1838 (Saros 122) |
August 18, 1849 (Saros 123) |
July 18, 1860 (Saros 124) | |
June 18, 1871 (Saros 125) |
May 17, 1882 (Saros 126) |
April 16, 1893 (Saros 127) | |
March 17, 1904 (Saros 128) |
February 14, 1915 (Saros 129) |
January 14, 1926 (Saros 130) | |
December 13, 1936 (Saros 131) |
November 12, 1947 (Saros 132) |
October 12, 1958 (Saros 133) | |
September 11, 1969 (Saros 134) |
August 10, 1980 (Saros 135) |
July 11, 1991 (Saros 136) | |
June 10, 2002 (Saros 137) |
May 10, 2013 (Saros 138) |
April 8, 2024 (Saros 139) | |
March 9, 2035 (Saros 140) |
February 5, 2046 (Saros 141) |
January 5, 2057 (Saros 142) | |
December 6, 2067 (Saros 143) |
November 4, 2078 (Saros 144) |
October 4, 2089 (Saros 145) | |
September 4, 2100 (Saros 146) |
In the 22nd century:
- Solar saros 147: annular solar eclipse of August 4, 2111
- Solar saros 148: total solar eclipse of July 4, 2122
- Solar saros 149: total solar eclipse of June 3, 2133
- Solar saros 150: annular solar eclipse of May 3, 2144
- Solar saros 151: annular solar eclipse of April 2, 2155
- Solar saros 152: total solar eclipse of March 2, 2166
- Solar saros 153: annular solar eclipse of January 29, 2177
- Solar saros 154: annular solar eclipse of December 29, 2187
- Solar saros 155: total solar eclipse of November 28, 2198
In the 23rd century:
- Solar saros 156: annular solar eclipse of October 29, 2209
- Solar saros 157: annular solar eclipse of September 27, 2220
- Solar saros 158: total solar eclipse of August 28, 2231
- Solar saros 159: partial solar eclipse of July 28, 2242
- Solar saros 160: partial solar eclipse of June 26, 2253
- Solar saros 161: partial solar eclipse of May 26, 2264
- Solar saros 162: partial solar eclipse of April 26, 2275
- Solar saros 163: partial solar eclipse of March 25, 2286
- Solar saros 164: partial solar eclipse of February 22, 2297
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).
22 eclipse events between December 13, 1898, and July 20, 1982 | ||||
---|---|---|---|---|
December 13–14 | October 1–2 | July 20–21 | May 9 | February 24–25 |
111 | 113 | 115 | 117 | 119 |
December 13, 1898 |
July 21, 1906 |
May 9, 1910 |
February 25, 1914 | |
121 | 123 | 125 | 127 | 129 |
December 14, 1917 |
October 1, 1921 |
July 20, 1925 |
May 9, 1929 |
February 24, 1933 |
131 | 133 | 135 | 137 | 139 |
December 13, 1936 |
October 1, 1940 |
July 20, 1944 |
May 9, 1948 |
February 25, 1952 |
141 | 143 | 145 | 147 | 149 |
December 14, 1955 |
October 2, 1959 |
July 20, 1963 |
May 9, 1967 |
February 25, 1971 |
151 | 153 | 155 | ||
December 13, 1974 |
October 2, 1978 |
July 20, 1982 |
Notes
- van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
References
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC