Lunar Polar Hydrogen Mapper

Lunar Polar Hydrogen Mapper, or LunaH-Map, was one of the 10 CubeSats launched with Artemis 1 on 16 November 2022.[2][3] Along with Lunar IceCube and LunIR, LunaH-Map will help investigate the possible presence of water-ice on the Moon.[1] Arizona State University began development of LunaH-Map after being awarded a contract by NASA in early 2015. The development team consists of about 20 professionals and students led by Craig Hardgrove, the principal investigator.[4] The mission is a part of NASA's SIMPLEx program.[5]

Lunar Polar Hydrogen Mapper
Rendering of the LunaH-Map spacecraft
NamesLunaH-Map
Mission typeLunar orbiter
OperatorArizona State University
Websitelunahmap.asu.edu
Mission duration96 days (planned) 96 days
(achieved)
Spacecraft properties
SpacecraftLunaH-Map
Spacecraft typeCubeSat
Bus6U CubeSat
ManufacturerArizona State University
Launch mass14 kg (31 lb)[1]
Dimensions10 cm × 20 cm × 30 cm (3.9 in × 7.9 in × 11.8 in)
Powerwatts
Start of mission
Launch date16 November 2022, 06:47:44 UTC[2]
RocketSLS Block 1
Launch siteKSC, LC-39B
ContractorNASA
End of mission
Last contactFebruary 15, 2023
Decay dateFebruary 20, 2023
Orbital parameters
Reference systemSelenocentric orbit
RegimePolar orbit
Periselene altitude5 km (3.1 mi)
Inclination90°
Period10 hours

LunaH-Map mission logo
 

Objective

LunaH-Map's primary objective is to map the abundance of hydrogen down to one meter beneath the surface of the lunar south pole. It will be inserted into a polar orbit around the Moon, with its periselene located near the lunar south pole, initially passing above Shackleton crater.[1] LunaH-Map will provide a high resolution map of the abundance and distribution of hydrogen rich compounds, like water, in this region of the Moon and expand on the less accurate maps made by previous missions. This information may then be used to improve scientific understanding of how water is created and spread throughout the Solar System or used by future crewed missions for life support and fuel production.[6]

LunaH-Map, along with other long distance CubeSat missions like Mars Cube One, will demonstrate vital technologies for including CubeSats in other interplanetary missions.[7]

History

LunaH-Map was conceived in a discussion between Craig Hardgrove and future LunaH-Map chief engineer, Igor Lazbin, about issues with the spatial resolution of various neutron detectors in use around Mars. Instruments like Dynamic Albedo of Neutrons on the Curiosity rover can only make measurements of about 3 m (9.8 ft) in radius from between the rear wheels of the rover, while on orbit neutron detectors, like the High Energy Neutron Detector on the 2001 Mars Odyssey probe, can only provide large, inaccurate maps over hundreds of square kilometers.[6] Similar issues are present in current maps of hydrogen distributions on the Moon, so Hardgrove designed LunaH-Map to orbit closer to the lunar south pole than previous crafts to improve the resolution of these maps.

By April 2015, Hardgrove had assembled a team composed of members of various government, academic and private institutions and drafted a proposal to NASA. In early 2015, LunaH-Map was one of two CubeSats chosen by NASA's Science Mission Directorate through the Small Innovative Missions for Planetary Exploration (SIMPLEx) program, along with Q-PACE.[6][8]

Hardware

Because of the scope of this mission, several unique challenges need to be addressed in implementing hardware. Typical low Earth orbit (LEO) CubeSats can use off-the-shelf hardware, or parts available commercially for other uses, but because LunaH-Map is intended to run longer and travel further than most LEO CubSat missions, commercial parts cannot be expected to perform reliably for the mission duration unmodified. Also, unlike most conventional CubeSats, LunaH-Map will need to navigate to its desired orbit after leaving the launch vehicle, so it will need to be equipped with its own propulsion system.[9]

The primary science instrument will be a scintillation neutron detector composed of elpasolite (Cs2YLiCl6:Ce or CLYC). This material is a scintillator, which measurably glows when it interacts with thermal and epithermal neutrons. LunaH-Map's neutron detector will consist of an array of eight 2.5 × 2.5 × 2 cm CLYC scintillators.[10][11]

Mission

LunaH-Map launched with Artemis 1 from Kennedy Space Center on November 16, 2022. It was deployed from the Orion Stage Adapter 5 hours and 33 minutes after launch. Ground controllers were able to contact the CubeSat soon after using NASA's Deep Space Network. They began commissioning spacecraft systems but ran into problems with the propulsion system. As a result LunaH-Map didn't perform the maneuver it was scheduled to during its lunar flyby on November 21.[12]

If they are able to get the propulsion system working properly within the next few months, then the mission can likely still be salvaged. The fault is believed to have been caused by a propulsion system valve which is partially stuck. The spacecraft is currently heating the valve in an attempt to free it.[12]

In spite of the fault with the propulsion system, LunaH-Map has begun using its instruments and returning data, including neutrons detected during its flyby and images of the moon taken with its star tracker. Before their next attempt at igniting the propulsion system, NASA plans to conduct an auto-navigation experiment and ranging tests with the Deep Space Network. NASA officials are also investigating other possible targets that LunaH-Map can investigate if the propulsion system is not fixed in time to enter polar orbit of the Moon.[12]

See also

The 10 CubeSats flying in the Artemis 1 mission
The 3 CubeSat missions removed from Artemis 1

References

  1. Harbaugh, Jennifer (2 February 2016). "LunaH-Map: University-Built CubeSat to Map Water-Ice on the Moon". nasa.gov. NASA. Retrieved 10 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  2. Roulette, Joey; Gorman, Steve (16 November 2022). "NASA's next-generation Artemis mission heads to moon on debut test flight". Reuters. Retrieved 16 November 2022.
  3. Clark, Stephen (12 October 2021). "Adapter structure with 10 CubeSats installed on top of Artemis moon rocket". Spaceflight Now. Retrieved 22 October 2021.
  4. Cassis, Nikki (25 August 2015). "ASU chosen to lead lunar CubeSat mission". asunow.asu.edu. Arizona State University. Retrieved 10 March 2021.
  5. NASA, Small Innovative Missions for Planetary Exploration Program Abstracts of selected proposals, August 8, 2015. Retrieved Nov. 17, 2022.
  6. Dreier, Casey (2 September 2015). "CubeSats to the Moon". Planetary Society. Retrieved 10 March 2021.
  7. Stirone, Shannon (8 October 2015). "CubeSats are Paving Mankind's Way Back to the Moon and Beyond". popsci.com. Popular Science. Retrieved 10 March 2021.
  8. Hambleton, Kathryn; Newton, Kim; Ridinger, Shannon (2 February 2016). "Space Launch System's First Flight to Send Small Sci-Tech Satellites to Space". nasa.gov. NASA. Retrieved 10 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  9. Seckel, Scott (23 November 2015). "How to build a spacecraft: The Beginning". asunow.asu.edu. Arizona State University. Retrieved 10 March 2021.
  10. Hardgrove, Craig. "LunaH-Map CubeSat" (PDF). neutron.asu.edu. Arizona State University. Retrieved 10 March 2021.
  11. Hardgrove, Craig; et al. (1 March 2020). "The Lunar Polar Hydrogen Mapper CubeSat Mission". IEEE Aerospace and Electronic Systems Magazine. 35 (3): 54–69. doi:10.1109/MAES.2019.2950747. S2CID 219130387.
  12. Mike Wall (23 November 2022). "Artemis 1 cubesat fails to fire engine as planned during moon flyby". Space.com. Retrieved 28 November 2022.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.