Beryl
Beryl (/ˈbɛrəl/ BERR-əl) is a mineral composed of beryllium aluminium silicate with the chemical formula Be3Al2Si6O18.[6] Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several meters in size, but terminated crystals are relatively rare. Pure beryl is colorless, but it is frequently tinted by impurities; possible colors are green, blue, yellow, pink, and red (the rarest). It is an ore source of beryllium.[7]
Beryl | |
---|---|
General | |
Category | Cyclosilicate |
Formula (repeating unit) | Be3Al2Si6O18 |
IMA symbol | Brl[1] |
Strunz classification | 9.CJ.05 |
Crystal system | Hexagonal |
Crystal class | Dihexagonal dipyramidal (6/mmm) H-M symbol: (6/m 2/m 2/m) |
Space group | P6/mcc |
Unit cell | a = 9.21 Å, c = 9.19 Å; Z = 2 |
Identification | |
Formula mass | 537.50 g/mol |
Color | Green, blue, yellow, colorless, pink, and others |
Crystal habit | Prismatic to tabular crystals; radial, columnar; granular to compact massive |
Twinning | Rare |
Cleavage | Imperfect on {0001} |
Fracture | Conchoidal to irregular |
Tenacity | Brittle |
Mohs scale hardness | 7.5–8.0 |
Luster | Vitreous to resinous |
Streak | White |
Diaphaneity | Transparent to translucent |
Specific gravity | 2.63–2.92 |
Optical properties | Uniaxial (−) |
Refractive index | nω = 1.564–1.595 nε = 1.568–1.602 |
Birefringence | δ = 0.0040–0.0070 |
Pleochroism | Weak to distinct |
Ultraviolet fluorescence | None (some fracture filling materials used to improve emerald's clarity do fluoresce, but the stone itself does not). Morganite has weak violet fluorescence. |
References | [2][3][4][5]: 112 |
Etymology
The word beryl – Middle English: beril – is borrowed, via Old French: beryl and Latin: beryllus, from Ancient Greek βήρυλλος bḗryllos, which referred to a 'precious blue-green color-of-sea-water stone';[2] from Prakrit veruḷiya, veḷuriya 'beryl'[8][lower-alpha 1] which is ultimately of Dravidian origin, maybe from the name of Belur or Velur, a town in Karnataka, southern India.[9] The term was later adopted for the mineral beryl more exclusively.
When the first eyeglasses were constructed in 13th-century Italy, the lenses were made of beryl (or of rock crystal) as glass could not be made clear enough. Consequently, glasses were named Brillen in German[10] (bril in Dutch and briller in Danish).
Deposits
Beryl is a common mineral, and it is widely distributed in nature. It is found most commonly in granitic pegmatites, but also occurs in mica schists, such as those of the Ural Mountains, and in limestone in Colombia.[11] It is less common in ordinary granite and is only infrequently found in nepheline syenite. Beryl is often associated with tin and tungsten ore bodies formed as high-temperature hydrothermal veins. In granitic pegmatites, beryl is found in association with quartz, potassium feldspar, albite, muscovite, biotite, and tourmaline. Beryl is sometimes found in metasomatic contacts of igneous intrusions with gneiss, schist, or carbonate rocks.[12] Common beryl, mined as beryllium ore, is found in small deposits in many countries, but the main producers are Russia, Brazil, and the United States.[11]
New England's pegmatites have produced some of the largest beryls found, including one massive crystal from the Bumpus Quarry in Albany, Maine with dimensions 5.5 by 1.2 m (18.0 by 3.9 ft) with a mass of around 18 tonnes (20 short tons); it is New Hampshire's state mineral. As of 1999, the world's largest known naturally occurring crystal of any mineral is a crystal of beryl from Malakialina, Madagascar, 18 m (59 ft) long and 3.5 m (11 ft) in diameter, and weighing 380,000 kg (840,000 lb).[13]
Crystal habit and structure
Beryl belongs to the hexagonal crystal system. Normally beryl forms hexagonal columns but can also occur in massive habits. As a cyclosilicate beryl incorporates rings of silicate tetrahedra of Si6O18 that are arranged in columns along the C axis and as parallel layers perpendicular to the C axis, forming channels along the C axis.[7] These channels permit a variety of ions, neutral atoms, and molecules to be incorporated into the crystal thus disrupting the overall charge of the crystal permitting further substitutions in aluminium, silicon, and beryllium sites in the crystal structure.[7] These impurities give rise to the variety of colors of beryl that can be found. Increasing alkali content within the silicate ring channels causes increases to the refractive indices and birefringence.[14]
Human health impact
Beryl is a beryllium compound that is a known carcinogen with acute toxic effects leading to pneumonitis when inhaled.[15] Care must thus be used when mining, handling, and refining these gems.[16]
Varieties
Aquamarine and maxixe
Aquamarine (from Latin: aqua marina, "sea water"[17]) is a blue or cyan variety of beryl. It occurs at most localities which yield ordinary beryl. The gem-gravel placer deposits of Sri Lanka contain aquamarine. Green-yellow beryl, such as that occurring in Brazil, is sometimes called chrysolite aquamarine.[18] The deep blue version of aquamarine is called maxixe[19] (pronounced mah-she-she).[20] Its color results from a radiation-induced color center.[21]
The pale blue color of aquamarine is attributed to Fe2+. Fe3+ ions produce golden-yellow color, and when both Fe2+ and Fe3+ are present, the color is a darker blue as in maxixe.[22][23] Decoloration of maxixe by light or heat thus may be due to the charge transfer between Fe3+ and Fe2+.[24]
In the United States, aquamarines can be found at the summit of Mount Antero in the Sawatch Range in central Colorado, and in the New England and North Carolina pegmatites.[25] Aquamarines are also present in the state of Wyoming, aquamarine has been discovered in the Big Horn Mountains, near Powder River Pass.[26] Another location within the United States is the Sawtooth Range near Stanley, Idaho, although the minerals are within a wilderness area which prevents collecting.[27] In Brazil, there are mines in the states of Minas Gerais,[25] Espírito Santo, and Bahia, and minorly in Rio Grande do Norte.[28] The mines of Colombia, Madagascar, Russia,[25] Namibia,[29] Zambia,[30] Malawi, Tanzania, and Kenya[31] also produce aquamarine.
Emerald
Emerald is green beryl, colored by around 2% chromium and sometimes vanadium.[32][33] Most emeralds are highly included, so their brittleness (resistance to breakage) is classified as generally poor.[34]
The modern English word "emerald" comes via Middle English emeraude, imported from modern French via Old French ésmeraude and Medieval Latin esmaraldus, from Latin smaragdus, from Greek σμάραγδος smaragdos meaning ‘green gem’.[lower-alpha 2]
Emeralds in antiquity were mined by the Egyptians and in what is now Austria, as well as Swat in contemporary Pakistan.[36] A rare type of emerald known as a trapiche emerald is occasionally found in the mines of Colombia. A trapiche emerald exhibits a "star" pattern; it has raylike spokes of dark carbon impurities that give the emerald a six-pointed radial pattern. It is named for the trapiche, a grinding wheel used to process sugarcane in the region. Colombian emeralds are generally the most prized due to their transparency and fire. Some of the rarest emeralds come from the two main emerald belts in the Eastern Ranges of the Colombian Andes: Muzo and Coscuez west of the Altiplano Cundiboyacense, and Chivor and Somondoco to the east. Fine emeralds are also found in other countries, such as Zambia, Brazil, Zimbabwe, Madagascar, Pakistan, India, Afghanistan and Russia. In the US, emeralds can be found in Hiddenite, North Carolina. In 1998, emeralds were discovered in Yukon.
Emerald is a rare and valuable gemstone and, as such, it has provided the incentive for developing synthetic emeralds. Both hydrothermal[37] and flux-growth synthetics have been produced. The first commercially successful emerald synthesis process was that of Carroll Chatham.[38] The other large producer of flux emeralds was Pierre Gilson Sr., which has been on the market since 1964. Gilson's emeralds are usually grown on natural colorless beryl seeds which become coated on both sides. Growth occurs at the rate of 1 millimetre (0.039 in) per month, a typical seven-month growth run producing emerald crystals of 7 mm of thickness.[39] The green color of emeralds is widely attributed to presence of Cr3+ ions.[40][22][23] Intensely green beryls from Brazil, Zimbabwe and elsewhere in which the color is attributed to vanadium have also been sold and certified as emeralds.[41][42][43]
Golden beryl and heliodor
Golden beryl can range in colors from pale yellow to a brilliant gold. Unlike emerald, golden beryl generally has very few flaws. The term "golden beryl" is sometimes synonymous with heliodor (from Greek hēlios – ἥλιος "sun" + dōron – δῶρον "gift") but golden beryl refers to pure yellow or golden yellow shades, while heliodor refers to the greenish-yellow shades. The golden yellow color is attributed to Fe3+ ions.[32][40] Both golden beryl and heliodor are used as gems. Probably the largest cut golden beryl is the flawless 2,054-carat (410.8 g) stone on display in the Hall of Gems, Washington, D.C., United States.[44]
Goshenite
Colorless beryl is called goshenite. The name originates from Goshen, Massachusetts, where it was originally discovered. In the past, goshenite was used for manufacturing eyeglasses and lenses owing to its transparency. Nowadays, it is most commonly used for gemstone purposes.[45][46]
The gem value of goshenite is relatively low. However, goshenite can be colored yellow, green, pink, blue and in intermediate colors by irradiating it with high-energy particles. The resulting color depends on the content of Ca, Sc, Ti, V, Fe, and Co impurities.[40]
Morganite
Morganite, also known as "pink beryl", "rose beryl", "pink emerald" (which is not a legal term according to the new Federal Trade Commission Guidelines and Regulations), and "cesian (or caesian) beryl", is a rare light pink to rose-colored gem-quality variety of beryl. Orange/yellow varieties of morganite can also be found, and color banding is common. It can be routinely heat treated to remove patches of yellow and is occasionally treated by irradiation to improve its color. The pink color of morganite is attributed to Mn2+ ions.[32]
Red beryl
Red variety of beryl (the "bixbite") was first described in 1904 for an occurrence, its type locality, at Maynard's Claim (Pismire Knolls), Thomas Range, Juab County, Utah.[47][48] The dark red color is attributed to Mn3+ ions.[32] Old synonym "bixbite" is deprecated from the CIBJO because of the possibility of confusion with the mineral bixbyite (both named after mineralogist Maynard Bixby).[49] Red "bixbite" beryl formerly was marketed as "red" or "scarlet emerald", but these terms involving "Emerald" terminology are now prohibited in the US.[50]
Red beryl is very rare and has only been reported from a handful of North American locations: Wah Wah Mountains, Beaver County, Utah; Paramount Canyon, Round Mountain, Juab County, Utah; and Sierra County, New Mexico, although this locality does not often produce gem-grade stones.[47] The bulk of gem-grade red beryl comes from the Ruby-Violet Claim in the Wah Wah Mts. of midwestern Utah, discovered in 1958 by Lamar Hodges, of Fillmore, Utah, while he was prospecting for uranium.[51] Red beryl has been known to be confused with pezzottaite, a caesium analog of beryl, found in Madagascar and, more recently, Afghanistan; cut gems of the two varieties can be distinguished by their difference in refractive index, and the rough crystals easily by their differing crystal systems (pezzottaite trigonal, red beryl hexagonal). Synthetic red beryl is also produced.[52] Like emerald and unlike most other varieties of beryl, the red ones are usually highly included.
While gem beryls are ordinarily found in pegmatites and certain metamorphic stones, red beryl occurs in topaz-bearing rhyolites.[53] It is formed by crystallizing under low pressure and high temperature from a pneumatolytic phase along fractures or within near-surface miarolitic cavities of the rhyolite. Associated minerals include bixbyite, quartz, orthoclase, topaz, spessartine, pseudobrookite and hematite.[48]
Footnotes
- Compare veruḷiya and veḷuriya to the pseudo-Sanskritization वैडूर्य vaiḍūrya, meaning either "cat's eye" (gem), generic "jewel", or "lapis lazuli" (gem). The folk etymology explains the gem name as meaning "[brought] from [the city of] Vidūra".[8]
- The Greek σμάραγδος (smaragdos) is used in the Semitic languages as אזמרגד , izmargad, as a loan-word meaning a precious emerald-colored stone. Greek smaragdos was used to translate the native Hebrew word ברקת, bareket, for one of the twelve listed stones in the Hoshen pectoral pendant of the Kohen HaGadol. The word bareket is also used to mean "lightning flash". It may be related to Akkadian baraqtu, which means "emerald". In turn the semetic language words are possibly related to the Sanskrit word मरकत marakata, meaning "green".[35]
See also
- Chrysoberyl – Mineral or gemstone of beryllium aluminate
- List of minerals – List of minerals with Wikipedia articles
- List of emeralds by size
References
- Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
- "Beryl". mindat.org. Archived from the original on 26 October 2007.
- "Beryl Mineral Data". webmineral.org. Archived from the original on 12 May 2008.
- "Beryl" (PDF). Mineral Data Publishing. 2001. Archived (PDF) from the original on 28 November 2011.
- Schumann, Walter (2009). Gemstones of the World. Sterling Publishing Co. ISBN 978-1-402-76829-3. Archived from the original on 20 November 2017. Retrieved 22 May 2018.
- "Beryl". www.minerals.net. Retrieved 12 July 2018.
- Klein, Cornelis; Dutrow, Barbara; Dana, James Dwight (2007). The Manual of Mineral Science (after James D. Dana) (23rd ed.). Hoboken, N.J.: J. Wiley. ISBN 978-0-471-72157-4. OCLC 76798190.
- Skeat, Walter W. (1993). The Concise Dictionary of English Etymology. Wordsworth Editions. p. 36. ISBN 978-1-85326-311-8.
- "beryl". Merriam-Webster. Archived from the original on 9 October 2013. Retrieved 27 January 2014.
- Kluge, Alexander, ed. (1975). "Brillen". Etymologisches Wörterbuch der deutschen Sprache (21 ed.).
- Klein, Cornelis; Hurlbut, Cornelius S. Jr. (1993). Manual of Mineralogy (after James D. Dana) (21st ed.). New York: Wiley. p. 472. ISBN 047157452X.
- Nesse, William D. (2000). Introduction to mineralogy. New York: Oxford University Press. p. 301. ISBN 9780195106916.
- G. Cressey and I. F. Mercer, (1999) Crystals, London, Natural History Museum, page 58
- Deer, W.A.; Howie, R.A.; Zussman, J. (2013). An introduction to the rock-forming minerals (Third ed.). London, UK. ISBN 978-0-903-05627-4. OCLC 858884283.
{{cite book}}
: CS1 maint: location missing publisher (link) - "Concise International Chemical Assessment Document 32, Beryllium and Beryllium compounds". Retrieved 16 July 2019.
- "Hazardous Substance Fact Sheet: Beryl" (PDF). New Jersey Department of Health and Human Services. April 2020. Retrieved August 4, 2023.
- "aquamarine". Merriam-Webster. Archived from the original on 6 February 2017. Retrieved 5 February 2017.
- Owens, George (1957). "The Amateur Lapidary". Rocks & Minerals. 32 (9–10): 471. doi:10.1080/00357529.1957.11766963.
- Grande, Lance; Augustyn, Allison (November 15, 2009). Gems and Gemstones: Timeless Natural Beauty of the Mineral World. University of Chicago Press. p. 125. ISBN 978-0-226-30511-0.
- Bradshaw, John J. (September 1, 2018). "Maxixe Beryl". Gemworld. Retrieved August 4, 2023.
- Watkins, M. (2002). Rediscovering Colors: A Study in Pollyanna Realism. Netherlands: Springer. p. 21. ISBN 978-1402007378.
- Viana, R.R.; da Costa, G.M.; de Grave, E.; Stern, W.B.; Jordt-Evangelista, H. (2002). "Characterization of beryl (aquamarine variety) by Mössbauer spectroscopy". Physics and Chemistry of Minerals. 29 (1): 78. Bibcode:2002PCM....29...78V. doi:10.1007/s002690100210. S2CID 96286267.
- Blak, Ana Regina; Isotani, Sadao; Watanabe, Shigueo (1983). "Optical absorption and electron spin resonance in blue and green natural beryl: A reply". Physics and Chemistry of Minerals. 9 (6): 279. Bibcode:1983PCM.....9..279B. doi:10.1007/BF00309581. S2CID 97353580.
- Andersson, Lars Olov (July 15, 2019). "Comments on Beryl Colors and on Other Observations Regarding Iron-containing Beryls". The Canadian Mineralogist. 57 (4): 551–566. doi:10.3749/canmin.1900021. S2CID 200066862.
- Sinkankas, John (1964). Mineralogy for amateurs. Princeton, N.J.: Van Nostrand. pp. 507–509. ISBN 0442276249.
- Fritsch, E.; Shigley, J.E. (1989). "Contribution to the identification of treated colored diamonds: diamonds with peculiar color-zoned pavilions". The Quarterly Journal of the Gemological Institute of America. 25 (2): 95–101.
- Kiilsgaard, T.H.; Freeman, V.L.; Coffman, J.S. (1970). "Mineral resources of the Sawtooth Primitive Area, Idaho". U.S. Geological Survey Bulletin. 1319-D: D-108. doi:10.3133/b1319D.
- Cassedanne, J.; Philippo, Simon (2015). Minerals and Gem deposits of the eastern Brazilian pegmatites. Musée national d’histoire naturelle Luxembourg. pp. 139–206. Retrieved April 15, 2022.
- Klein & Hurlbut 1993, p. 472.
- Carranza, E. J. M.; Woldai, T.; Chikambwe, E. M. (March 2005). "Application of Data-Driven Evidential Belief Functions to Prospectivity Mapping for Aquamarine-Bearing Pegmatites, Lundazi District, Zambia". Natural Resources Research. 14 (1): 47–63. doi:10.1007/s11053-005-4678-9. S2CID 129933245.
- Yager, T.R. (2007). Minerals Yearbook. U.S. Geological Survey. pp. 22.1, 27.1, 39.3. Retrieved April 15, 2022.
- "Color in the beryl group". Mineral Spectroscopy Server. minerals.caltech.edu. California Institute of Technology. Archived from the original on 22 August 2011. Retrieved 6 June 2009.
- Hurlbut, Cornelius S., Jr. & Kammerling, Robert C. (1991). Gemology. New York: John Wiley & Sons. p. 203. ISBN 978-0-471-42224-2.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - "Emerald Quality Factors". GIA.edu. Gemological Institute of America. Archived from the original on November 2, 2016. Retrieved November 1, 2016.
- Fernie, W.T., M.D. (1906). Precious Stones for Curative Wear. John Wright. & Co.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Giuliani, G.; Chaussidon, M.; Schubnel, H.J.; Piat, D.H.; Rollion-Bard, C.; France-Lanord, C.; Giard, D.; de Narvaez, D.; Rondeau, B. (2000). "Oxygen isotopes and emerald trade routes since antiquity". Science. 287 (5453): 631–633. Bibcode:2000Sci...287..631G. doi:10.1126/science.287.5453.631. PMID 10649992.
- Hosaka, M. (1991). "Hydrothermal growth of gem stones and their characterization". Progress in Crystal Growth and Characterization of Materials. 21 (1–4): 71. doi:10.1016/0960-8974(91)90008-Z.
- "Carroll Chatham". The Gemology Project. Archived from the original on 10 September 2011.
- Nassau, K. (1980). Gems Made by Man. Gemological Institute of America. ISBN 978-0-873-11016-7.
- Ibragimova, E.M.; Mukhamedshina, N.M.; Islamov, A.Kh. (2009). "Correlations between admixtures and color centers created upon irradiation of natural beryl crystals". Inorganic Materials. 45 (2): 162. doi:10.1134/S0020168509020101. S2CID 96344887.
- Thomas, Arthur (2008). Gemstones: Properties, Identification and Use. London: New Holland. pp. 77–78. ISBN 978-1-845-37602-4.
- Behmenburg, Christa; Conklin, Lawrence; Giuliani, Gaston; Glas, Maximilian; Gray, Patricia; Gray, Michael (January 2002). Giuliani, Gaston; Jarnot, Miranda; Neumeier, Gunther; Ottaway, Terri; Sinkankas, John (eds.). Emeralds of the World. ExtraLapis. Vol. 2. East Hampton, CT: Lapis International. pp. 75–77. ISBN 978-0-971-53711-8.
- Deer, W.A.; Zussman, J.; Howie, R.A. (1997). Disilicates and Ring Silicates. Rock-forming Minerals. Vol. 1B (2 ed.). Bath: Geological Society of London. pp. 393–394. ISBN 978-1-897-79989-5.
- Thomas, Arthur (2007). Gemstones. New Holland Publishers. p. 77. ISBN 978-1-845-37602-4 – via Google Books.
- "Goshenite, the colorless variety of beryl". Amethyst Galleries. Archived from the original on 30 June 2009. Retrieved 6 June 2009.
- "Goshenite Gem". Optical Mineralogy.com. 2 March 2009. Archived from the original on 9 July 2009. Retrieved 6 June 2009.
- "Red Beryl". www.mindat.org. Archived from the original on 3 December 2013.
- Ege, Carl (September 2002). "What gemstone is found in Utah that is rarer than diamond and more valuable than gold?". Survey Notes. Vol. 34, no. 3. Archived from the original on 8 November 2010. Retrieved 2 July 2011.
- "The Mineral Beryl". Minerals.net. Archived from the original on 28 August 2017. Retrieved 28 August 2017.
- 16 CFR 23.26
- "Red Emerald History". RedEmerald.com. Archived from the original on 3 December 2007. Retrieved 21 November 2007.
- "Bixbite". The Gemstone List. Archived from the original on 12 March 2016.
- "Red beryl value, price, and jewelry information". International Gem Society. Archived from the original on 28 August 2017. Retrieved 28 August 2017.
Further reading
- Sinkankas, John (1994). Emerald & Other Beryls. Geoscience Press. ISBN 978-0-801-97114-3.
External links
- The dictionary definition of beryl at Wiktionary
- The American Cyclopædia. 1879. .