Choreographic programming
In computer science, choreographic programming is a programming paradigm where programs are compositions of interactions among multiple concurrent participants.[1][2][3]
Overview
Choreographies
In choreographic programming, developers use a choreographic programming language to define the intended communication behaviour of concurrent participants. Programs in this paradigm are called choreographies.[1] Choreographic languages are inspired by security protocol notation (also known as "Alice and Bob" notation). The key to these languages is the communication primitive, for example
Alice.expr -> Bob.x
reads "Alice
communicates the result of evaluating the expression expr
to Bob
, which stores it in its local variable x
".[3]
Alice, Bob, etc. are typically called roles or processes.[2]
The example below shows a choreography for a simplified single sign-on (SSO) protocol based on a Central Authentication Service (CAS) that involves three roles:
Client
, which wishes to obtain an access token fromCAS
to interact withService
.Service
, which needs to know fromCAS
if theClient
should be given access.CAS
, which is the Central Authentication Service responsible for checking theClient
's credentials.
The choreography is:
Client.(credentials, serviceID) -> CAS.authRequest
if CAS.check(authRequest) then
CAS.token = genToken(authRequest)
CAS.Success(token) -> Client.result
CAS.Success(token) -> Service.result
else
CAS.Failure -> Client.result
CAS.Failure -> Service.result
The choreography starts in Line 1, where Client
communicates a pair consisting of some credentials and the identifier of the service it wishes to access to CAS
. CAS
stores this pair in its local variable authRequest
(for authentication request).
In Line 2, the CAS
checks if the request is valid for obtaining an authentication token.
If so, it generates a token and communicates a Success
message containing the token to both Client
and Service
(Lines 3–5).
Otherwise, the CAS
informs Client
and Service
that authentication failed, by sending a Failure
message (Lines 7–8). We refer to this choreography as the "SSO choreography" in the remainder.
Endpoint Projection
A key feature of choreographic programming is the capability of compiling choreographies to distributed implementations. These implementations can be libraries for software that needs to participate in a computer network by following a protocol,[1][3][4] or standalone distributed programs.[5][6]
The translation of a choreography into distributed programs is called endpoint projection (EPP for short).[2][3]
Endpoint projection returns a program for each role described in the source choreography.[3] For example, given the choreography above, endpoint projection would return three programs: one for Client
, one for Service
, and one for CAS
. They are shown below in pseudocode form, where send
and recv
are primitives for sending and receiving messages to/from other roles.
Client | send (credentials, serviceID) to CAS
recv result from CAS
|
---|---|
Service | recv result from CAS
|
CAS | recv authRequest from Client
if check(authRequest) then
token = genToken(authRequest)
send Success(token) to Client
send Success(token) to Service
else
send Failure to Client
send Failure to Service
|
For each role, its code contains the actions that the role should execute to implement the choreography correctly together with the others.
Development
The paradigm of choreographic programming originates from its titular PhD thesis.[7][8][9] The inspiration for the syntax of choreographic programming languages can be traced back to security protocol notation, also known as "Alice and Bob" notation.[1] Choreographic programming has also been heavily influenced by standards for service choreography and interaction diagrams, as well as developments of the theory of process calculi.[1][3][10]
Choreographic programming is an active area of research. The paradigm has been used in the study of information flow,[11] parallel computing,[12] cyber-physical systems,[13][14] runtime adaptation,[6] and system integration.[15]
Languages
- AIOCJ (website).[6] A choreographic programming language for adaptable systems that produces code in Jolie.
- Chor (website).[5] A session-typed choreographic programming language that compiles to microservices in Jolie.
- Choral (website). A higher-order, object-oriented choreographic programming language that compiles to libraries in Java.
- Core Choreographies.[16] A core theoretical model for choreographic programming. A mechanised implementation is available in Coq.[17][18][19]
- Kalas.[20] A choreographic programming language with a verified compiler to CakeML.
- Pirouette.[8] A mechanised choreographic programming language theory with higher-order procedures.
See also
References
- Montesi, Fabrizio (2023). Introduction to Choreographies. Cambridge University Press. doi:10.1017/9781108981491. ISBN 978-1-108-83376-9. S2CID 102335067.
- Yoshida, Nobuko; Vasconcelos, Vasco T.; Padovani, Luca; Bono, Nicholas Ng; Neykova, Rumyana; Montesi, Fabrizio; Mascardi, Viviana; Martins, Francisco; Johnsen, Einar Broch; Hu, Raymond; Giachino, Elena; Gesbert, Nils; Gay, Simon J.; Deniélou, Pierre-Malo; Castagna, Giuseppe; Campos, Joana; Bravetti, Mario; Bono, Viviana; Ancona, Davide (2016). "Behavioral Types in Programming Languages". Foundations and Trends in Programming Languages. 3 (2–3): 95–230. doi:10.1561/2500000031. hdl:10044/1/44282.
- Giallorenzo, Saverio; Montesi, Fabrizio; Peressotti, Marco; Richter, David; Salvaneschi, Guido; Weisenburger, Pascal (2021). Multiparty Languages: The Choreographic and Multitier Cases (Pearl). Leibniz International Proceedings in Informatics (LIPIcs). Vol. 194. pp. 22:1–22:27. doi:10.4230/LIPIcs.ECOOP.2021.22. ISBN 9783959771900. (ECOOP 2021 Distinguished Paper)
- Choral programming language
- Carbone, Marco; Montesi, Fabrizio (2013). "Deadlock-freedom-by-design". Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL '13. p. 263. doi:10.1145/2429069.2429101. ISBN 9781450318327. S2CID 15627190.
- Preda, Mila Dalla; Gabbrielli, Maurizio; Giallorenzo, Saverio; Lanese, Ivan; Mauro, Jacopo (2017). "Dynamic Choreographies: Theory and Implementation". Logical Methods in Computer Science. 13 (2). doi:10.23638/LMCS-13(2:1)2017. S2CID 5555662.
- Montesi, Fabrizio (2013). Choreographic Programming (PDF) (PhD). IT University of Copenhagen. ISBN 978-87-7949-299-8. (EAPLS Best PhD Dissertation Award)
- Hirsch, Andrew K.; Garg, Deepak (16 January 2022). "Pirouette: higher-order typed functional choreographies". Proceedings of the ACM on Programming Languages. 6 (POPL): 1–27. doi:10.1145/3498684. S2CID 243833095. (POPL 2022 Distinguished Paper)
- Arend Rensink (2015-08-30). "Fabrizio Montesi wins the EAPLS Best PhD Dissertation Award 2014". European Association for Programming Languages and Systems.
- Carbone, Marco; Honda, Kohei; Yoshida, Nobuko (2012). "Structured Communication-Centered Programming for Web Services". ACM Transactions on Programming Languages and Systems. 34 (2): 1–78. doi:10.1145/2220365.2220367. S2CID 15737118.
- Lluch Lafuente, Alberto; Nielson, Flemming; Nielson, Hanne Riis (2015). "Discretionary Information Flow Control for Interaction-Oriented Specifications". Logic, Rewriting, and Concurrency (PDF). Lecture Notes in Computer Science. Vol. 9200. pp. 427–450. doi:10.1007/978-3-319-23165-5_20. ISBN 978-3-319-23164-8. S2CID 32617923.
- Cruz-Filipe, Luís; Montesi, Fabrizio (2016). "Choreographies in Practice". Formal Techniques for Distributed Objects, Components, and Systems. Lecture Notes in Computer Science. Vol. 9688. pp. 114–123. arXiv:1602.08863. doi:10.1007/978-3-319-39570-8_8. ISBN 978-3-319-39569-2. S2CID 18067252.
- López, Hugo A.; Heussen, Kai (2017). "Choreographing cyber-physical distributed control systems for the energy sector". Proceedings of the Symposium on Applied Computing. pp. 437–443. doi:10.1145/3019612.3019656. ISBN 9781450344869. S2CID 39112346.
- López, Hugo A.; Nielson, Flemming; Nielson, Hanne Riis (2016). "Enforcing Availability in Failure-Aware Communicating Systems" (PDF). Formal Techniques for Distributed Objects, Components, and Systems. Lecture Notes in Computer Science. Vol. 9688. pp. 195–211. doi:10.1007/978-3-319-39570-8_13. ISBN 978-3-319-39569-2. S2CID 12872876.
- Giallorenzo, Saverio; Lanese, Ivan; Russo, Daniel (2018). "ChIP: A Choreographic Integration Process". On the Move to Meaningful Internet Systems. OTM 2018 Conferences (PDF). Lecture Notes in Computer Science. Vol. 11230. pp. 22–40. doi:10.1007/978-3-030-02671-4_2. ISBN 978-3-030-02670-7. S2CID 53015580.
- Cruz-Filipe, Luís; Montesi, Fabrizio (2020). "A core model for choreographic programming". Theoretical Computer Science. 802: 38–66. doi:10.1016/j.tcs.2019.07.005. S2CID 199122777.
- Cohen, Liron; Kaliszyk, Cezary (2021). Formalising a Turing-Complete Choreographic Language in Coq. Leibniz International Proceedings in Informatics (LIPIcs). Vol. 193. pp. 15:1–15:18. doi:10.4230/LIPIcs.ITP.2021.15. ISBN 9783959771887. S2CID 231802115.
- Cruz-Filipe, Luís; Montesi, Fabrizio; Peressotti, Marco (2023-05-27). "A Formal Theory of Choreographic Programming". Journal of Automated Reasoning. 67 (2): 21. doi:10.1007/s10817-023-09665-3. ISSN 1573-0670. S2CID 252090305.
- Cruz-Filipe, Luís; Montesi, Fabrizio; Peressotti, Marco (2021), Cerone, Antonio; Ölveczky, Peter Csaba (eds.), "Certifying Choreography Compilation", Theoretical Aspects of Computing – ICTAC 2021, Lecture Notes in Computer Science, Cham: Springer International Publishing, vol. 12819, pp. 115–133, arXiv:2102.10698, doi:10.1007/978-3-030-85315-0_8, ISBN 978-3-030-85314-3, S2CID 231985665, retrieved 2022-03-07
- Pohjola, Johannes Åman; Gómez-Londoño, Alejandro; Shaker, James; Norrish, Michael (2022). Andronick, June; de Moura, Leonardo (eds.). "Kalas: A Verified, End-To-End Compiler for a Choreographic Language". 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 237: 27:1–27:18. doi:10.4230/LIPIcs.ITP.2022.27. ISBN 978-3-95977-252-5. S2CID 251322644.