100,000,000
100,000,000 (one hundred million) is the natural number following 99,999,999 and preceding 100,000,001.
| 100000000 | |
|---|---|
| Cardinal | One hundred million | 
| Ordinal | 100000000th (one hundred millionth)  | 
| Factorization | 28 × 58 | 
| Greek numeral | |
| Roman numeral | C | 
| Binary | 1011111010111100001000000002 | 
| Ternary | 202220111120122013 | 
| Senary | 135312025446 | 
| Octal | 5753604008 | 
| Duodecimal | 295A645412 | 
| Hexadecimal | 5F5E10016 | 
In scientific notation, it is written as 108.
East Asian languages treat 100,000,000 as a counting unit, significant as the square of a myriad, also a counting unit. In Chinese, Korean, and Japanese respectively it is yi (simplified Chinese: 亿; traditional Chinese: 億; pinyin: yì) (or Chinese: 萬萬; pinyin: wànwàn in ancient texts), eok (억/億) and oku (億). These languages do not have single words for a thousand to the second, third, fifth powers, etc.
100,000,000 is also the fourth power of 100 and also the square of 10000.
Selected 9-digit numbers (100,000,001–999,999,999)
    
    100,000,001 to 199,999,999
    
- 100,000,007 = smallest nine digit prime[1]
 - 100,005,153 = smallest triangular number with 9 digits and the 14,142nd triangular number
 - 100,020,001 = 100012, palindromic square
 - 100,544,625 = 4653, the smallest 9-digit cube
 - 102,030,201 = 101012, palindromic square
 - 102,334,155 = Fibonacci number
 - 102,400,000 = 405
 - 104,060,401 = 102012 = 1014, palindromic square
 - 105,413,504 = 147
 - 107,890,609 = Wedderburn-Etherington number[2]
 - 111,111,111 = repunit, square root of 12345678987654321
 - 111,111,113 = Chen prime, Sophie Germain prime, cousin prime.
 - 113,379,904 = 106482 = 4843 = 226
 - 115,856,201 = 415
 - 119,481,296 = logarithmic number[3]
 - 121,242,121 = 110112, palindromic square
 - 123,454,321 = 111112, palindromic square
 - 123,456,789 = smallest zeroless base 10 pandigital number
 - 125,686,521 = 112112, palindromic square
 - 126,390,032 = number of 34-bead necklaces (turning over is allowed) where complements are equivalent[4]
 - 126,491,971 = Leonardo prime
 - 129,140,163 = 317
 - 129,145,076 = Leyland number
 - 129,644,790 = Catalan number[5]
 - 130,150,588 = number of 33-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed[6]
 - 130,691,232 = 425
 - 134,217,728 = 5123 = 89 = 227
 - 134,218,457 = Leyland number
 - 136,048,896 = 116642 = 1084
 - 139,854,276 = 118262, the smallest zeroless base 10 pandigital square
 - 142,547,559 = Motzkin number[7]
 - 147,008,443 = 435
 - 148,035,889 = 121672 = 5293 = 236
 - 157,115,917 – number of parallelogram polyominoes with 24 cells.[8]
 - 157,351,936 = 125442 = 1124
 - 164,916,224 = 445
 - 165,580,141 = Fibonacci number
 - 167,444,795 = cyclic number in base 6
 - 170,859,375 = 157
 - 171,794,492 = number of reduced trees with 36 nodes[9]
 - 177,264,449 = Leyland number
 - 179,424,673 = 10,000,000th prime number
 - 184,528,125 = 455
 - 188,378,402 = number of ways to partition {1,2,...,11} and then partition each cell (block) into subcells.[10]
 - 190,899,322 = Bell number[11]
 - 191,102,976 = 138242 = 5763 = 246
 - 192,622,052 = number of free 18-ominoes
 - 199,960,004 = number of surface-points of a tetrahedron with edge-length 9999[12]
 
200,000,000 to 299,999,999
    
- 200,000,002 = number of surface-points of a tetrahedron with edge-length 10000[13]
 - 205,962,976 = 465
 - 210,295,326 = Fine number
 - 211,016,256 = number of primitive polynomials of degree 33 over GF(2)[14]
 - 212,890,625 = 1-automorphic number[15]
 - 214,358,881 = 146412 = 1214 = 118
 - 222,222,222 = repdigit
 - 222,222,227 = safe prime
 - 223,092,870 = the product of the first nine prime numbers, thus the ninth primorial
 - 225,058,681 = Pell number[16]
 - 225,331,713 = self-descriptive number in base 9
 - 229,345,007 = 475
 - 232,792,560 = superior highly composite number;[17] colossally abundant number;[18] the smallest number divisible by all the numbers 1 through 22
 - 244,140,625 = 156252 = 1253 = 256 = 512
 - 244,389,457 = Leyland number
 - 244,330,711 = n such that n | (3n + 5)[19]
 - 245,492,244 = number of 35-bead necklaces (turning over is allowed) where complements are equivalent[20]
 - 252,648,992 = number of 34-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed[21]
 - 253,450,711 = Wedderburn-Etherington prime[2]
 - 254,803,968 = 485
 - 267,914,296 = Fibonacci number
 - 268,435,456 = 163842 = 1284 = 167 = 414 = 228
 - 268,436,240 = Leyland number
 - 268,473,872 = Leyland number
 - 272,400,600 = the number of terms of the harmonic series required to pass 20
 - 275,305,224 = the number of magic squares of order 5, excluding rotations and reflections
 - 282,475,249 = 168072 = 495 = 710
 - 292,475,249 = Leyland number
 
300,000,000 to 399,999,999
    
- 308,915,776 = 175762 = 6763 = 266
 - 312,500,000 = 505
 - 321,534,781 = Markov prime
 - 331,160,281 = Leonardo prime
 - 333,333,333 = repdigit
 - 336,849,900 = number of primitive polynomials of degree 34 over GF(2)[22]
 - 345,025,251 = 515
 - 350,238,175 = number of reduced trees with 37 nodes[23]
 - 362,802,072 – number of parallelogram polyominoes with 25 cells[24]
 - 364,568,617 = Leyland number
 - 365,496,202 = n such that n | (3n + 5)[25]
 - 367,567,200 = colossally abundant number,[26] superior highly composite number[27]
 - 380,204,032 = 525
 - 381,654,729 = the only polydivisible number that is also a zeroless pandigital number
 - 387,420,489 = 196832 = 7293 = 276 = 99 = 318 and in tetration notation 29
 - 387,426,321 = Leyland number
 
400,000,000 to 499,999,999
    
- 400,080,004 = 200022, palindromic square
 - 400,763,223 = Motzkin number[7]
 - 404,090,404 = 201022, palindromic square
 - 405,071,317 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99
 - 410,338,673 = 177
 - 418,195,493 = 535
 - 429,981,696 = 207362 = 1444 = 128 = 100,000,00012 AKA a gross-great-great-gross (10012 great-great-grosses)
 - 433,494,437 = Fibonacci prime, Markov prime
 - 442,386,619 = alternating factorial[28]
 - 444,101,658 = number of (unordered, unlabeled) rooted trimmed trees with 27 nodes[29]
 - 444,444,444 = repdigit
 - 455,052,511 = number of primes under 1010
 - 459,165,024 = 545
 - 467,871,369 = number of triangle-free graphs on 14 vertices[30]
 - 477,353,376 = number of 36-bead necklaces (turning over is allowed) where complements are equivalent[31]
 - 477,638,700 = Catalan number[5]
 - 479,001,599 = factorial prime[32]
 - 479,001,600 = 12!
 - 481,890,304 = 219522 = 7843 = 286
 - 490,853,416 = number of 35-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed[33]
 - 499,999,751 = Sophie Germain prime
 
500,000,000 to 599,999,999
    
- 503,284,375 = 555
 - 522,808,225 = 228652, palindromic square
 - 535,828,591 = Leonardo prime
 - 536,870,911 = third composite Mersenne number with a prime exponent
 - 536,870,912 = 229
 - 536,871,753 = Leyland number
 - 542,474,231 = k such that the sum of the squares of the first k primes is divisible by k.[34]
 - 543,339,720 = Pell number[16]
 - 550,731,776 = 565
 - 554,999,445 = a Kaprekar constant for digit length 9 in base 10
 - 555,555,555 = repdigit
 - 574,304,985 = 19 + 29 + 39 + 49 + 59 + 69 + 79 + 89 + 99 [35]
 - 575,023,344 = 14-th derivative of xx at x=1[36]
 - 594,823,321 = 243892 = 8413 = 296
 - 596,572,387 = Wedderburn-Etherington prime[2]
 
600,000,000 to 699,999,999
    
- 601,692,057 = 575
 - 612,220,032 = 187
 - 617,323,716 = 248462, palindromic square
 - 635,318,657 = the smallest number that is the sum of two fourth powers in two different ways (594 + 1584 = 1334 + 1344), of which Euler was aware.
 - 644,972,544 = 8643, 3-smooth number
 - 656,356,768 = 585
 - 666,666,666 = repdigit
 - 670,617,279 = highest stopping time integer under 109 for the Collatz conjecture
 
700,000,000 to 799,999,999
    
- 701,408,733 = Fibonacci number
 - 714,924,299 = 595
 - 715,497,037 = number of reduced trees with 38 nodes[37]
 - 715,827,883 = Wagstaff prime,[38] Jacobsthal prime
 - 725,594,112 = number of primitive polynomials of degree 36 over GF(2)[39]
 - 729,000,000 = 270002 = 9003 = 306
 - 742,624,232 = number of free 19-ominoes
 - 774,840,978 = Leyland number
 - 777,600,000 = 605
 - 777,777,777 = repdigit
 - 778,483,932 = Fine number
 - 780,291,637 = Markov prime
 - 787,109,376 = 1-automorphic number[15]
 
800,000,000 to 899,999,999
    
- 815,730,721 = 138
 - 815,730,721 = 1694
 - 835,210,000 = 1704
 - 837,759,792 – number of parallelogram polyominoes with 26 cells.[40]
 - 844,596,301 = 615
 - 855,036,081 = 1714
 - 875,213,056 = 1724
 - 887,503,681 = 316
 - 888,888,888 – repdigit
 - 893,554,688 = 2-automorphic number[41]
 - 893,871,739 = 197
 - 895,745,041 = 1734
 
900,000,000 to 999,999,999
    
- 906,150,257 = smallest counterexample to the Polya conjecture
 - 916,132,832 = 625
 - 923,187,456 = 303842, the largest zeroless pandigital square
 - 928,772,650 = number of 37-bead necklaces (turning over is allowed) where complements are equivalent[42]
 - 929,275,200 = number of primitive polynomials of degree 35 over GF(2)[43]
 - 942,060,249 = 306932, palindromic square
 - 987,654,321 = largest zeroless pandigital number
 - 992,436,543 = 635
 - 997,002,999 = 9993, the largest 9-digit cube
 - 999,950,884 = 316222, the largest 9-digit square
 - 999,961,560 = largest triangular number with 9 digits and the 44,720th triangular number
 - 999,999,937 = largest 9-digit prime number
 - 999,999,999 = repdigit
 
References
    
- Sloane, N. J. A. (ed.). "Sequence A003617 (Smallest n-digit prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 7 September 2017.
 - Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - Sloane, N. J. A. (ed.). "Sequence A002104 (Logarithmic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - Sloane, N. J. A. (ed.). "Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000014 (Number of series-reduced trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
 - Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - Sloane, N. J. A. (ed.). "Sequence A277288 (Positive integers n such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000014 (Number of series-reduced trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A277288 (Positive integers n such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - Sloane, N. J. A. (ed.). "Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A006785 (Number of triangle-free graphs on n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - Sloane, N. J. A. (ed.). "Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
 - Sloane, N. J. A. (ed.). "Sequence A031971". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A005727". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000014 (Number of series-reduced trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - "Sloane's A000979 : Wagstaff primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
 - Sloane, N. J. A. (ed.). "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.
 - Sloane, N. J. A. (ed.). "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.