WASP-88

WASP-88 is a F-type main-sequence star. Its surface temperature is 6450±61 K. WASP-88 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of 0.03±0.04,[5] and is younger at an age of 3.0±1.3 billion years.

WASP-88
Observation data
Epoch J2000      Equinox J2000
Constellation Indus
Right ascension 20h 38m 02.6870s[1]
Declination −48° 27 43.4255[1]
Apparent magnitude (V) 11.39[2]
Characteristics
Evolutionary stage main-sequence star or subgiant star[3]
Spectral type F6[3]
Astrometry
Radial velocity (Rv)−5.1±0.6[4] km/s
Proper motion (μ) RA: 5.890[4] mas/yr
Dec.: −4.892[4] mas/yr
Parallax (π)1.7844 ± 0.0185 mas[4]
Distance1,830 ± 20 ly
(560 ± 6 pc)
Position (relative to WASP-88)[2]
ComponentWASP-88B
Epoch of observation2017
Angular distance3.350±0.015
Position angle355.5±0.5°
Observed separation
(projected)
1877±8 AU
Details[5]
WASP-88
Mass1.450±0.050[6] M
Radius2.08+0.12
0.06
[6] R
Surface gravity (log g)4.24±0.06 cgs
Temperature6450±61 K
Metallicity [Fe/H]0.03±0.04 dex
Rotational velocity (v sin i)8.4±0.8[6] km/s
Age3.0±1.3 Gyr
WASP-88B
Mass0.11+0.03
0.02
[2] M
Temperature2844+155
209
[2] K
Other designations
Gaia DR2 6482103014085857024, 2MASS J20380268-4827434[1]
Database references
SIMBADdata

A multiplicity survey did detect a candidate red dwarf companion to WASP-88 in 2020, with a 1.65% probability of it being an unrelated background star.[2]

Planetary system

In 2013, one planet, named WASP-88b, was discovered on a tight, circular orbit.[3] The planet is highly inflated, and may be an easy target for atmospheric characterization. Planetary equilibrium temperature is 1775 K.[7] The planetary atmosphere transmission spectrum is gray and featureless, probably indicating a large concentration of hazes.[8]

The WASP-88 planetary system[6]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.570+0.077
0.078
 MJ
0.06438+0.00073
0.00074
4.954000±0.000019 <0.13 88.0+1.4
1.5
°
1.70+0.13
0.07
 RJ

References

  1. "WASP-88". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2020-01-25.
  2. Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars. I. High-contrast imaging with VLT/SPHERE", Astronomy & Astrophysics, 635: A73, arXiv:2001.08224, Bibcode:2020A&A...635A..73B, doi:10.1051/0004-6361/201937127, S2CID 210861118
  3. Delrez, L.; Van Grootel, V.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Neveu-VanMalle, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2013), Transiting planets from WASP-South, Euler and TRAPPIST:WASP-68 b, WASP-73 b and WASP-88 b, three hot Jupiters transiting evolved solar-type stars, arXiv:1312.1827, doi:10.1051/0004-6361/201323204, S2CID 54846964
  4. Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  5. Andreasen, D. T.; Sousa, S. G.; Tsantaki, M.; Teixeira, G. D. C.; Mortier, A.; Santos, N. C.; Suarez-Andres, L.; Delgado-Mena, E.; Ferreira, A. C. S. (2017), "SWEET-Cat update and FASMA A new minimization procedure for stellar parameters using high-quality spectra", Astronomy & Astrophysics, A69: 600, arXiv:1703.06671, Bibcode:2017A&A...600A..69A, doi:10.1051/0004-6361/201629967, S2CID 119534579
  6. Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; et al. (2017), "The GAPS Programme with HARPS-N@TNG XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets", Astronomy & Astrophysics, A107: 602, arXiv:1704.00373, Bibcode:2017A&A...602A.107B, doi:10.1051/0004-6361/201629882, S2CID 118923163
  7. Kabáth, P.; Žák, Jiří; Boffin, H. M. J.; Ivanov, V. D.; Jones, D.; Skarka, M. (2019), "Detection limits of exoplanetary atmospheres with 2-m class telescopes", Publications of the Astronomical Society of the Pacific, 131 (1002): 085001, arXiv:1905.04665, Bibcode:2019PASP..131h5001K, doi:10.1088/1538-3873/ab2143, S2CID 152282971
  8. Spyratos, Petros; Nikolov, Nikolay; Southworth, John; Constantinou, Savvas; Madhusudhan, Nikku; Carter, Aarynn L.; De Mooij, Ernst J W.; Fortney, Jonathan J.; Gibson, Neale P.; Goyal, Jayesh M.; Helling, Christiane; Mayne, Nathan J.; Mikal-Evans, Thomas (2021), "Transmission spectroscopy with VLT FORS2: A featureless spectrum for the low-density transiting exoplanet WASP-88b", Monthly Notices of the Royal Astronomical Society, 506 (2): 2853–2870, arXiv:2106.14808, doi:10.1093/mnras/stab1847


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.