WASP-46

WASP-46 is a G-type main-sequence star about 1240 light-years away. The star is older than Sun and is strongly depleted in heavy elements compared to Sun, having just 45% of solar abundance.[2] Despite its advanced age, the star is rotating rapidly, being spun up by the tides raised by giant planet on close orbit.[4]

WASP-46
Observation data
Epoch J2000      Equinox J2000
Constellation Indus
Right ascension 21h 14m 56.8596s[1]
Declination −55° 52 18.4600[1]
Apparent magnitude (V) 12.9
Characteristics
Spectral type G6V
Astrometry
Radial velocity (Rv)-2.81 km/s
Proper motion (μ) RA: 12.641 mas/yr
Dec.: -16.011 mas/yr
Parallax (π)2.636 ± 0.0311 mas[1]
Distance1,240 ± 10 ly
(379 ± 4 pc)
Details[2][3]
Mass0.956±0.034 M
Radius0.917±0.028 R
Surface gravity (log g)4.493±0.023 cgs
Temperature5600±150 K
Metallicity−0.37±0.13
Rotational velocity (v sin i)1.9±1.2 km/s
Age9.6+3.4
4.2
 Gyr
Other designations
Gaia DR2 6462994429708755072, GSC 08797-00758, 2MASS J21145687-5552184, DENIS J211456.8-555218[1]
Database references
SIMBADdata

The star is displaying an excess ultraviolet emission associated with starspot activity,[5] and suspected to be surrounded by dust and debris disk.[6]

Planetary system

In 2011 a transiting hot superjovian planet b was detected.[2] The planet equilibrium temperature is 1636±44 K.[3] The measured in 2014 dayside temperature is much higher at 2386 K, indicating a very poor heat redistribution across planet.[7] The re-measurement of dayside planetary temperature in 2020 has resulted in lower readings of 1870+130
120
K.[8]

In 2017, a search for transit-timing variation of WASP-46b yielded zero results, thus ruling out existence of additional gas giants in the system. The orbital decay of WASP-46b was also not detected.[9]

The WASP-46 planetary system[3]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 1.91+0.11
0.06
 MJ
0.02335±0.00063 1.4303700±0.0000023 0 82.63±0.38° 1.174+0.033
0.0017
 RJ

References

  1. WASP-46 -- Star
  2. Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Queloz, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; West, R. G.; Pepe, F.; Pollacco, D.; Ségransan, D.; Todd, I.; Udry, S. (2012), "WASP-44b, WASP-45b and WASP-46b: three short-period, transiting extrasolar planets", Monthly Notices of the Royal Astronomical Society, 422 (3): 1988–1998, arXiv:1105.3179, Bibcode:2012MNRAS.422.1988A, doi:10.1111/j.1365-2966.2012.20635.x, S2CID 34406657
  3. Ciceri, S.; Mancini, L.; Southworth, J.; Lendl, M.; Tregloan-Reed, J.; Brahm, R.; Chen, G.; d'Ago, G.; Dominik, M.; Figuera Jaimes, R.; Galianni, P.; Harpsøe, K.; Hinse, T. C.; Jørgensen, U. G.; Juncher, D.; Korhonen, H.; Liebig, C.; Rabus, M.; Bonomo, A. S.; Bott, K.; Henning, Th.; Jordán, A.; Sozzetti, A.; Alsubai, K. A.; Andersen, J. M.; Bajek, D.; Bozza, V.; Bramich, D. M.; Browne, P.; et al. (2016), "Physical properties of the planetary systems WASP-45 and WASP-46 from simultaneous multi-band photometry", Monthly Notices of the Royal Astronomical Society, 456 (1): 990–1002, arXiv:1511.05171, Bibcode:2016MNRAS.456..990C, doi:10.1093/mnras/stv2698, S2CID 14670311
  4. Maxted, P. F. L.; Serenelli, A. M.; Southworth, J. (2015), "A comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars", Astronomy & Astrophysics, 577: A90, arXiv:1503.09111, Bibcode:2015A&A...577A..90M, doi:10.1051/0004-6361/201525774, S2CID 53324330
  5. Shkolnik, Evgenya L. (2013), "An Ultraviolet Investigation of Activity on Exoplanet Host Stars", The Astrophysical Journal, 766 (1): 9, arXiv:1301.6192, Bibcode:2013ApJ...766....9S, doi:10.1088/0004-637X/766/1/9, S2CID 118415788
  6. Ribas, Á.; Merín, B.; Ardila, D. R.; Bouy, H. (2012), "Warm Debris Disks Candidates in Transiting Planets Systems", Astronomy & Astrophysics, 541: A38, arXiv:1203.0013, Bibcode:2012A&A...541A..38R, doi:10.1051/0004-6361/201118306, S2CID 29380547
  7. Chen, G.; Van Boekel, R.; Wang, H.; Nikolov, N.; Seemann, U.; Henning, Th. (2014), "Observed spectral energy distribution of the thermal emission from the dayside of WASP-46b", Astronomy & Astrophysics, 567: A8, arXiv:1405.7048, doi:10.1051/0004-6361/201423795, S2CID 119187817
  8. Wong, Ian; Shporer, Avi; Daylan, Tansu; Benneke, Björn; Fetherolf, Tara; Kane, Stephen R.; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Winn, Joshua N.; Jenkins, Jon M.; Boyd, Patricia T.; Glidden, Ana; Goeke, Robert F.; Sha, Lizhou; Ting, Eric B.; Yahalomi, Daniel (2020), "Systematic phase curve study of known transiting systems from year one of the TESS mission", The Astronomical Journal, 160 (4): 155, arXiv:2003.06407, Bibcode:2020AJ....160..155W, doi:10.3847/1538-3881/ababad, S2CID 212717799
  9. Petrucci, R.; Jofré, E.; Ferrero, L. V.; Cúneo, V.; Saker, L.; Lovos, F.; Gómez, M.; Mauas, P. (2018), "A search for transit timing variations and orbital decay in WASP-46b", Monthly Notices of the Royal Astronomical Society, 473 (4): 5126–5141, arXiv:1710.04707, Bibcode:2018MNRAS.473.5126P, doi:10.1093/mnras/stx2647, S2CID 54509070


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.