List of Quaternary volcanic eruptions

This article is a list of volcanic eruptions of approximately magnitude 6 or more on the Volcanic Explosivity Index (VEI) or equivalent sulfur dioxide emission during the Holocene, and Pleistocene eruptions of the Decade Volcanoes (AvachinskyKoryaksky, Kamchatka; Colima, Trans-Mexican Volcanic Belt; Mount Etna, Sicily; Galeras, Andes, Northern Volcanic Zone; Mauna Loa, Hawaii; Mount Merapi, Central Java; Mount Nyiragongo, East African Rift; Mount Rainier, Washington; Sakurajima, Kagoshima Prefecture; Santamaria/ Santiaguito, Central America Volcanic Arc; Santorini, Cyclades; Taal Volcano, Luzon Volcanic Arc; Teide, Canary Islands; Ulawun, New Britain; Mount Unzen, Nagasaki Prefecture; Mount Vesuvius, Naples); Campania, Italy; South Aegean Volcanic Arc; Laguna de Bay, Luzon Volcanic Arc; Mount Pinatubo, Luzon Volcanic Arc; Toba, Sunda Arc; Mount Meager massif, Garibaldi Volcanic Belt; Yellowstone hotspot, Wyoming; and Taupō Volcanic Zone, greater than VEI 4.

Clickable imagemap of notable volcanic eruptions. The apparent volume of each bubble is linearly proportional to the volume of tephra ejected, colour-coded by time of eruption as in the legend. Pink lines denote convergent boundaries, blue lines denote divergent boundaries and yellow spots denote hotspots.

The eruptions in the Holocene on the link: Holocene Volcanoes in Kamchatka were not added yet, but they are listed on the Peter L. Ward's supplemental table.[1] Some of the eruptions are not listed on the Global Volcanism Program timetable as well, at least not as VEI 6. The timetables of Global Volcanism Program;[2] Bristlecone pine tree-rings (Pinus longaeva, Pinus aristata, Pinus ponderosa, Pinus edulis, Pseudotsuga menziesii);[3] the 4 ka Yamal Peninsula Siberian larch (Larix sibirica) chronology;[4] the 7 ka Scots pine (Pinus sylvestris) chronology from Finnish Lapland;[5][6] GISP2 ice core;[7][8] GRIP ice core;[9] Dye 3 ice core;[9] Bipolar comparison;[10] Antarctic ice core (Bunder and Cole-Dai, 2003);[11] Antarctic ice core (Cole-Dai et al., 1997);[12] Crête ice core, in central Greenland,[13] benthic foraminifera in deep sea sediment cores (Lisiecki, Raymo 2005),[14] do not agree with each other sometimes. The 536–547 AD dust-veil event might be an impact event.[3][15]

Holocene eruptions

The Holocene epoch begins 11,700 years BP,[16] (10000 14C years ago)

Since 2000 AD

Name and area Date VEI Products Notes
Hunga Tonga–Hunga Ha'apai, Tonga202256.5 km3 (dense-rock equivalent) of tephraThe largest eruption of the 21st century
Puyehue-Cordón Caulle, Southern Chile20115

1000–2000 AD

1809–10 ice core event
Name and area Date VEI Products Notes
Pinatubo, island of Luzon, Philippines1991, Jun 1566 to 16 km3 (1.4 to 3.8 cu mi) of tephra[2] an estimated 20 million tons of sulfur dioxide were emitted[17]
Mount St. Helens, Washington state, USA1980, May 1851 to 1.1 km3 (0.2 to 0.3 cu mi) of tephra
Novarupta, Alaska Peninsula1912, Jun 6613 to 15 km3 (3.1 to 3.6 cu mi) of lava[18][19][20]
Santa Maria, Guatemala1902, Oct 24620 km3 (4.8 cu mi) of tephra[21]
Mount Tarawera, Taupō Volcanic Zone, New Zealand1886, Jun 1052 km3 (0.48 cu mi) of tephra[2]
Krakatoa, Indonesia1883, August 26–27621 km3 (5.0 cu mi) of tephra[22]
Mount Tambora, Lesser Sunda Islands, Indonesia1815, Apr 107160–213 km3 (38–51 cu mi) of tephraan estimated 10–120 million tons of sulfur dioxide were emitted, produced the "Year Without a Summer"[23]
1808 ice core eventUnknown eruption near equator, magnitude roughly half TamboraEmission of sulfur dioxide around the amount of the 1815 Tambora eruption (ice cores from Antarctica and Greenland).[24]
1808Major eruptions in Urzelina, Azores (Urzelina eruption, fissure vent), Klyuchevskaya Sopka, Kamchatka Peninsula,[25] and Taal Volcano, Philippines.[26]
Note: Thompson Island, northeast of Bouvet Island, South Atlantic Ocean, disappeared in the 19th century, if it ever existed.[27]
Grímsvötn, Northeastern Iceland1783–17846
Laki1783–1784614 cubic kilometres of lavaan estimated 120 million tons of sulfur dioxide were emitted, produced a Volcanic winter, 1783, on the North Hemisphere.[28]
Long Island (Papua New Guinea), northeast of New Guinea1660 ±20630 km3 (7.2 cu mi) of tephra[2]
Kolumbo, Santorini, Greece1650, Sep 27660 km3 (14.4 cu mi) of tephra[29]
Huaynaputina, Peru1600, Feb 19630 km3 (7.2 cu mi) of tephra[30]
Billy Mitchell, Bougainville Island, Papua New Guinea1580 ±20614 km3 (3.4 cu mi) of tephra[2]
Bárðarbunga, Northeastern Iceland1477610 km3 (2.4 cu mi) of tephra[2]
1452–53 ice core event, New Hebrides arc, Vanuatu.
Location is uncertain, may be Kuwae
36 to 96 km3 (8.6 to 23.0 cu mi) of tephra175–700 million tons of sulfuric acid;[31][32][33] only small pyroclastic flows are found at Kuwae
Mount Tarawera, Taupō Volcanic Zone, New Zealand1310 ± 1255 km3 (1.2 cu mi) of tephra (Kaharoa eruption)[2]
Quilotoa, Ecuador1280(?)621 km3 (5.0 cu mi) of tephra[2]
Samalas volcano, Rinjani Volcanic Complex, Lombok Island, Indonesia1257740 km3 (dense-rock equivalent) of tephra1257 Samalas eruption; Arctic and Antarctic ice cores provide compelling evidence to link the ice core sulfate spike of 1258/1259 A.D. to this volcano.[34][35][36]

1 to 1000 AD

Major volcanoes of Mexico
Tianchi eruption, Paektu Mountain, border of North Korea and China946 AD640 to 98 km3 (9.6 to 23.5 cu mi) of tephra[37]Also known as Millennium Eruption of Changbaishan
Eldgjá eruption, Laki system, Iceland934–940 AD6Estimated 18 km3 (4.3 cu mi) of lava[38]Estimated 219 million tons of sulfur dioxide were emitted[39]
Ceboruco, Northwest of the Trans-Mexican Volcanic Belt930 AD ±200611 km3 (2.6 cu mi) of tephra[2]
Dakataua, Northern tip of the Willaumez Peninsula, New Britain, Papua New Guinea800 AD ±506?10 km3 (2.4 cu mi)? of tephra[2]
Pago, East of Kimbe, New Britain, Papua New Guinea: Witori Caldera710 AD ±75630 km3 (7.2 cu mi) of tephra[2]
Mount Churchill, eastern Alaska700 AD ±200620 km3 (4.8 cu mi) of tephra[2]
Rabaul, Rabaul Caldera, New Britain540 AD ±100611 km3 (2.6 cu mi) of tephra[2]
Ilopango, El Salvador431 AD ±2, or 539/540 AD7106.5 km3 (25.5 cu mi) of tephra[40][2]
Ksudach, Kamchatka Peninsula, Russia240 AD ±l00620 to 26 km3 (4.8 to 6.2 cu mi) of tephra[2]
Taupō Volcanic Zone, Hatepe eruption of Taupō Volcano, New Zealand230 AD ±167120 km3 (29 cu mi) of tephra[41]
Mount Vesuvius, Italy79 AD Oct 24 (?)5?2.8 to 3.8 km3 (0.7 to 0.9 cu mi) of tephra[2][42][43]Pompeii eruption
Mount Churchill, eastern Alaska60 AD ±200625 km3 (6.0 cu mi) of tephra[2]
Ambrym, Vanuatu50 AD ±100660 to 80 km3 (14.4 to 19.2 cu mi) of tephra[2]

Before the Common Era (BC/BCE)

Name and area Date VEI Products Notes
Okmok, Okmok Caldera, Aleutian Islands44 BC[44]640 to 60 km3 (9.6 to 14.4 cu mi) of tephra[2]
Apoyeque, Nicaragua50 BC ±100618 km3 (4.3 cu mi) of tephra[2]
Raoul Island, Kermadec Islands, New Zealand250 BC ±756more than 10 km3 (2.4 cu mi) of tephra[2]
Mount Meager massif, Garibaldi Volcanic Belt, Canada400 BC ±505
Mount Tongariro, Taupō Volcanic Zone, New Zealand550 BC ±20051.2 km3 (0.29 cu mi) of tephra[2]
Pinatubo, island of Luzon, Philippines1050 BC ±500610 to 16 km3 (2.4 to 3.8 cu mi) of tephra[2]
Avachinsky, Kamchatka1350 BC (?)5more than 1.2 km3 (0.29 cu mi) of tephratephra layer IIAV3[2]
Pago, east of Kimbe, New Britain, Papua New Guinea: Witori Caldera1370 BC ±100630 km3 (7.2 cu mi) of tephra[2]
Taupō Volcanic Zone, Taupō, New Zealand1460 BC ±40617 km3 (4.1 cu mi) of tephra[2]
Avachinsky, Kamchatka1500 BC (?)5more than 3.6 km3 (0.86 cu mi) of tephratephra layer AV1[2]
Santorini (Thera), Greece, Youngest Caldera: Minoan eruption1610 BC ±14 years7123 km3 (30 cu mi) of tephra[45]Ended the Minoan settlement at Akrotiri and the Minoan age on Crete
Mount Aniakchak, Alaska Peninsula1645 BC ±106more than 50 km3 (12 cu mi) of tephra[2]Severe global cooling[46]
Veniaminof, Alaska Peninsula1750 BC (?)6more than 50 km3 (12 cu mi) of tephra[2]
Mount St. Helens, Washington, USA1860 BC (?)615 km3 (3.6 cu mi) of tephra[2]
Mount Hudson, Cerro, Southern Chile1890 BC (?)6more than 10 km3 (2.4 cu mi) of tephra[2]
Black Peak, Alaska Peninsula1900 BC ±150610 to 50 km3 (2.4 to 12.0 cu mi) of tephra[2]
Long Island (Papua New Guinea), Northeast of New Guinea2040 BC ± 1006more than 11 km3 (2.6 cu mi) of tephra[2]
Mount Vesuvius, Italy2420 BC ±405?3.9 km3 (0.94 cu mi) of tephraAvellino eruption[2][42][43][47]
Avachinsky, Kamchatka3200 BC ±1505more than 1.1 km3 (0.26 cu mi) of tephratephra layer IAv20 AV3[2]
Pinatubo, island of Luzon, Philippines3550 BC (?)610 to 16 km3 (2.4 to 3.8 cu mi) of tephra[2]
Talisay (Taal) caldera (size: 15 x 20 km), island of Luzon, Philippines3580 BC ±2007150 km3 (36 cu mi) of tephra[2]
Haroharo Caldera, Taupō Volcanic Zone, New Zealand3580 BC ±5052.8 km3 (0.67 cu mi) of tephra[2]
Pago, New Britain4000 BC ± 2006?10 km3 (2.4 cu mi)? of tephra[2]
Masaya Volcano, Nicaragua4050 BC (?)6more than 13 km3 (3.1 cu mi) of tephra[2]
Avachinsky, Kamchatka4340 BC ±755more than 1.3 km3 (0.31 cu mi) of tephratephra layer IAv12 AV4[2]
Macauley Island, Kermadec Islands, New Zealand4360 BC ±2006100 km3 (24 cu mi)? of tephra[2][48]
Mount Hudson, Cerro, Southern Chile4750 BC (?)618 km3 (4.3 cu mi) of tephra[2]
Mount Aniakchak, Alaska Peninsula5250 BC ±1000610 to 50 km3 (2.4 to 12.0 cu mi) of tephra[2]
Kikai Caldera (size: 19 km), Ryukyu Islands, Japan: Akahoya eruption5350 BC (?)780 to 220 km3 (19.2 to 52.8 cu mi) of tephra[2]
Mashu, Hokkaido, Japan5550 BC ±100619 km3 (4.6 cu mi) of tephra[2]
Tao-Rusyr Caldera, Kuril Islands5550 BC ±75630 to 36 cubic kilometers (7.2 to 8.6 cu mi) of tephra[2]
Mayor Island / Tūhua, Taupō Volcanic Zone, New Zealand5060 BC ±20051.6 km3 (0.38 cu mi) of tephra[2]
Crater Lake (Mount Mazama), Oregon, USA5677 BC ±1507150 km3 (36 cu mi) of tephra[2]
Khangar, Kamchatka Peninsula, Russia5700 BC ± 16614 to 16 km3 (3.4 to 3.8 cu mi) of tephra[2]
Crater Lake (Mount Mazama), Oregon, USA5900 BC ± 5068 to 28 km3 (1.9 to 6.7 cu mi) of tephra[2]
Avachinsky, Kamchatka5980 BC ±1005more than 8 to 10 km3 (1.9 to 2.4 cu mi) of tephratephra layer IAv1[2]
Menengai, East African Rift, Kenya6050 BC (?)670 km3 (17 cu mi)? of tephra[2]
Haroharo Caldera, Taupō Volcanic Zone, New Zealand6060 BC ±5051.2 km3 (0.29 cu mi) of tephra[2]
Sakurajima, island of Kyūshū, Japan: Aira Caldera6200 BC ±1000612 km3 (2.9 cu mi) of tephra[2]
Kurile Caldera (size: 8 x 14 km), Kamchatka Peninsula, Russia6440 BC ± 25 years7140 to 170 km3 (33.6 to 40.8 cu mi) of tephraIlinsky eruption[2]
Karymsky, Kamchatka Peninsula, Russia6600 BC (?)650 to 350 km3 (12.0 to 84.0 cu mi) of tephra[2]
Mount Vesuvius, Italy6940 BC ±1005?2.75 to 2.85 km3 (0.7 to 0.7 cu mi) of tephraMercato eruption[2][42][43]
Fisher Caldera, Unimak Island, Aleutian Islands7420 BC ±2006more than 50 km3 (12 cu mi) of tephra[2]
Pinatubo, island of Luzon, Philippines7460 BC ±1506–7?[2]
Lvinaya Past, Kuril Islands7480 BC ±5067 to 8 km3 (1.7 to 1.9 cu mi) of tephra[2]
Rotomā Caldera, Taupō Volcanic Zone, New Zealand7560 BC ±185more than 5.6 km3 (1.3 cu mi) of tephra[2]
Taupō Volcano, Taupō Volcanic Zone, New Zealand8130 BC ±20054.7 km3 (1.1 cu mi) of tephra[2]
Grímsvötn, Northeastern Iceland8230 BC ±506more than 15 km3 (3.6 cu mi) of tephra[2]
Ulleung, Korea8750 BC (?)6more than 10 km3 (2.4 cu mi) of tephra[2]
Mount Tongariro, Taupō Volcanic Zone, New Zealand9450 BC (?)51.7 km3 (0.41 cu mi) of tephra[2]
Taupō Volcano, Taupō Volcanic Zone, New Zealand9460 BC ±20051.4 km3 (0.34 cu mi) of tephra[2]
Mount Tongariro, Taupō Volcanic Zone, New Zealand9650 BC (?)51.6 km3 (0.38 cu mi) of tephra[2]
Nevado de Toluca, State of Mexico, Trans-Mexican Volcanic Belt10.5 ka614 km3 (3.4 cu mi) of tephraUpper Toluca Pumice[2][49]
GISP2 ice core event[1]11.258 ka

Pleistocene eruptions

2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.[50]

Name and area Date VEI Products Notes
GISP2 ice core event[1]12.657 ka
Eifel hotspot, Laacher See, Vulkan Eifel, Germany12.900 ka66 km3 (1.4 cu mi) of tephra.[51][52][53][54]
Mount Vesuvius, Italy16 ka5Green Pumice[42][43]
Mount Vesuvius, Italy18.3 ka6Basal Pumice[42][43]
Santorini (Thera), Greece: Cape Riva Calderaabout 21 ka[2]
Aira Caldera, south of the island of Kyūshū, Japanabout 22 ka7more than 400 km3 (96.0 cu mi) of tephra.[55]
Taupō Volcanic Zone, Oruanui eruption, Taupō Volcano, New Zealandaround 25.6 ka [56]8Approximately 1,170 km3 (280.7 cu mi) of tephra[57][58][59][60]
Laguna Caldera (size: 10 x 20 km), South-East of Manila, island of Luzon27–29 ka[2]
Alban Hills, Rome, Italy36 ka4Peperino Ignimbrite of Albano MaarSedimentation and mobility of PDCs: a reappraisal of ignimbrites’ aspect ratio[61]
Campi Flegrei, Naples, Italy39.280 ka ± 0.11[62] 200 cubic kilometres of lavaCampanian Tuff [1]
Galeras, Andes, Northern Volcanic Zone, Colombian department of Nariño40 ka2 km3 (0.5 cu mi) of tephra
Taupō Volcanic Zone, Rotoiti Ignimbrite, North Island, New Zealandabout 50 ka7about 240 km3 (57.6 cu mi) of tephra.[63]
Santorini (Thera), Greece: Skaros Calderaabout 70 ka[2]
Lake Toba (size: 100 x 30 km), Sumatra, Indonesia73.7 ka ± 0.3[64]2,500 to 3,000 km3 (599.8 to 719.7 cu mi) of tephra[65]estimated 150 to 1,000 million tons of sulfur dioxide were emitted (Youngest Toba Tuff).[66]
Aso Caldera, Kumamoto Prefecture, Japan 90 ka 8 930 to 1,860 km3 (223.1 to 446.2 cu mi) of tephra[67] The largest known eruption in Japan
Yellowstone hotspot: Yellowstone Calderabetween 70 and 150 ka1,000 km3 (239.9 cu mi) intracaldera rhyolitic lava flows.[2]
Galeras, Andes, Northern Volcanic Zone, Colombian department of Nariño150 ka2 km3 (0.5 cu mi) of tephra
Kos-Nisyros Caldera, Greece161 ka110 km3 (26 cu mi)Kos Plateau Tuff.[1]
Taal Caldera, island of Luzon, Philippinesbetween 500 and 100 ka25–30 km caldera formed by four explosive eruptions
Santorini (Thera), Greece: Southern Calderaabout 180 ka[2]
Taupō Volcanic Zone, Rotorua Caldera (size: 22 km wide), New Zealand220 kamore than 340 km3 (81.6 cu mi) of tephra.[1]
Taupō Volcanic Zone, Maroa Caldera (size: 16 x 25 km), New Zealand230 ka140 km3 (33.6 cu mi) of tephra.[1]
Taupō Volcanic Zone, Reporoa Caldera (size: 10 x 15 km), New Zealand230 ka7around 100 km3 (24.0 cu mi) of tephra[2]
Taupō Volcanic Zone, Whakamaru Caldera (size: 30 x 40 km), North Island, New Zealandaround 254 ka81,200 to 2,000 km3 (288 to 480 cu mi) of tephraWhakamaru Ignimbrite/Mount Curl Tephra[68][69]
Taupō Volcanic Zone, Matahina Ignimbrite, Haroharo Caldera, North Island, New Zealand280 ka7about 120 km3 (28.8 cu mi) of tephra.[70]
Alban Hills, Rome, Italy365–351 ka6Villa Senni Ignimbrite >50km3Volcanoes of the World: Third Edition [71]
Sabatini volcanic complex, Sabatini, Italy374 ka7more than 200 km3 (48 cu mi)Morphi tephra.[1]
Roccamonfina Caldera (size: 65 x 55 km), Roccamonfina, Italy385 ka100 to 125 km3 (24.0 to 30.0 cu mi) of tephra.[1]
Alban Hills, Rome, Italy407–398 ka6Pozzolane Nere Ignimbrite [71]
Alban Hills, Rome, Italy456–439 ka7Pozzolane Rosse Tephritic Ignimbrite >50km3Sedimentation and mobility of PDCs: a reappraisal of ignimbrites’ aspect ratio[61]
Maipo (volcano), Andes, Southern Volcanic Zone, Chile450–500 ka7Diamante Caldera
Galeras, Andes, Northern Volcanic Zone, Colombian department of Nariño560 ka15 km3 (3.6 cu mi) of tephra
Lake Toba, Sumatra, Indonesia501 ka ±5Middle Toba Tuff[65]
Yellowstone hotspot: Yellowstone Caldera (size: 45 x 85 km)640 ka8more than 1,000 km3 (240 cu mi) of tephraLava Creek Tuff[2]
Lake Toba, Sumatra, Indonesia840 ka ±30Oldest Toba Tuff[65]
Taupō Volcanic Zone, Mangakino Caldera, North Island, New Zealand0.97 Mamore than 300 km3 (72.0 cu mi)Rocky Hill Ignimbrite[1]
Taupō Volcanic Zone, Mangakino Caldera, North Island, New Zealand1.01 Mamore than 300 km3 (72.0 cu mi)Unit E[1]
Lake Toba, Sumatra, Indonesia1.2 ±0.16 MaHaranggoal Dacite Tuff[65]
Taupō Volcanic Zone, Mangakino Caldera, North Island, New Zealand1.23 Mamore than 300 km3 (72.0 cu mi)Ongatit Ignimbrite[1][72]
Yellowstone hotspot: Henry's Fork Caldera (size: 16 km wide)1.3 Ma7280 km3 (67.2 cu mi)Mesa Falls Tuff.[2]
Yellowstone hotspot: Island Park Caldera (size: 100 x 50 km)2.1 Ma82,450 km3 (588 cu mi)Huckleberry Ridge Tuff.[1][2]
Cerro Galán Caldera, Argentina (size: 35 x 20 km)2.2 Ma81,000 km3 (240 cu mi) of dacitic magma.[73]

Notes

List of Quaternary volcanic eruptions is located in Iceland
Grímsvötn
Grímsvötn
Laki
Laki
Eldgjá
Eldgjá
Katla
Katla
Bárðarbunga
Bárðarbunga
Torfajökull
Torfajökull
Askja
Askja
Loki
Loki
Eyjafjallajökull
Eyjafjallajökull
Iceland: volcanoes
Volcanism in Iceland
  • Iceland has four volcanic zones: Reykjanes (Mid-Atlantic Ridge),[74] West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ). The Mid-Iceland Belt (MIB) connects them across central Iceland. There are two intraplate belts too (Öræfajökull (ÖVB) and Snæfellsnes (SVB)).
    • Iceland's East Volcanic Zone: the central volcanoes of Vonarskard and Hágöngur belong to the same volcanic system; this also applies to Bárðarbunga and Hamarinn, and Grímsvötn and Þórðarhyrna.[75][76][77]
      • Laki is part of a volcanic system, centering on the Grímsvötn volcano (Long NE-SW-trending fissure systems, including Laki, extend from the central volcano).[2]
      • The Eldgjá canyon and the Katla volcano form another volcanic system. Although the Eldgjá canyon and the Laki fissure are very near from each other, lava from the Katla and the Hekla volcanic systems result in transitional alkalic basalts and lava from the central volcanoes result in tholeiitic basalts.
      • The central volcano of Bárðarbunga, the Veidivötn and Trollagigar fissures form one volcanic system, which extend about 100 km SW to near Torfajökull volcano and 50 km NE to near Askja volcano, respectively. The subglacial Loki-Fögrufjöll volcanic system located SW of Bárðarbunga volcano is also part of the Bárðarbunga volcanic system and contains two subglacial ridges extending from the largely subglacial Hamarinn central volcano (15 km southwest of Bárðarbunga); the Loki ridge trends to the NE and the Fögrufjöll ridge to the SW.[2]
  • New Zealand, North Island, Taupō Volcanic Zone:
  • Santorini, South Aegean Volcanic Arc. The southern Aegean is one of the most rapidly deforming regions of the Himalayan-Alpine mountain belt (Alpide belt).[81]
  • The twin volcanoes of Nindirí and Masaya lie within the massive Pleistocene Las Sierras pyroclastic shield volcano.[2]
  • There are two peaks in the Colima volcano complex: Nevado de Colima (4,330 m), which is older and inactive, lies 5 km north of the younger and very active 3,860 m Volcán de Colima (also called Volcán de Fuego de Colima).
  • The largely submarine Kuwae Caldera cuts the flank of the Late Pleistocene or Holocene Tavani Ruru volcano, the submarine volcano Karua lies near the northern rim of Kuwae Caldera.[2]
  • Bismarck volcanic arc, the Rabaul Caldera includes the sub-vent of Tavurvur and the sub-vent of Vulcan.
  • Bismarck volcanic arc, Pago volcano, New Britain, Papua New Guinea, is a young post-caldera cone within the Witori Caldera. The Buru Caldera cuts the SW flank of the Witori volcano.[2]
  • Sakurajima, Kyūshū, Japan, is a volcano of the Aira Caldera.
  • The Mount Unzen volcanic complex, East of Nagasaki, Japan, comprises three large stratovolcanoes with complex structures, Kinugasa on the North, Fugen-dake at the East-center, and Kusenbu on the South.

Nomenclature

Each state/ country seem to have a slightly different approach, but there is an order:

  • Craton, and then Province as sections or regions of a craton.
  • First: volcanic arc, volcanic belt and volcanic zone.
  • Second: volcanic area, caldera cluster and caldera complex.
  • Third: volcanic field, volcanic system and volcanic center.
    • A volcanic field is a localized area of the Earth's crust that is prone to localized volcanic activity.
    • A volcanic group (aka a volcanic complex) is a collection of related volcanoes or volcanic landforms.
  • Neutral: volcanic cluster and volcanic locus.

In the Basin and Range Province the volcanic fields are nested. The McDermit volcanic field, is also named Orevada rift volcanic field. The Latir-Questa volcanic locus and the Taos Plateau volcanic field seem to be in a similar area. The Southwest Nevada volcanic field, the Crater Flat-Lunar Crater volcanic zone, the Central Nevada volcanic field, the Indian Peak volcanic field and the Marysvale volcanic field seem to have no transition between each other; the Ocate volcanic field is also known as the Mora volcanic field; and the Red Hill volcanic field is also known as Quemado volcanic field.

References

  1. "Supplementary Table to P.L. Ward, Thin Solid Films (2009) Major volcanic eruptions and provinces" (PDF). Teton Tectonics. Retrieved 2010-03-16.
  2. http://www.volcano.si.edu/world/largeeruptions.cfm Large Holocene Eruptions Archived February 13, 2010, at the Wayback Machine
  3. Salzer, Matthew W.; Malcolm K. Hughes (2007). "Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr" (PDF). Quaternary Research. 67 (1): 57–68. Bibcode:2007QuRes..67...57S. doi:10.1016/j.yqres.2006.07.004. S2CID 14654597. Retrieved 2010-03-18.
  4. Hantemirov, Rashit M.; Shiyatov, Stepan G. (September 2002). "A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia". The Holocene. 12 (6): 717–726. Bibcode:2002Holoc..12..717H. doi:10.1191/0959683602hl585rp. S2CID 129192118.
  5. Eronen, Matti; Zetterberg, Pentti; Briffa, Keith R.; Lindholm, Markus; Meriläinen, Jouko; Timonen, Mauri (September 2002). "The supra-long Scots pine tree-ring record for Finnish Lapland: Part 1, chronology construction and initial inferences". The Holocene. 12 (6): 673–680. Bibcode:2002Holoc..12..673E. doi:10.1191/0959683602hl580rp. S2CID 54806912.
  6. Helama, Samuli; Lindholm, Markus; Timonen, Mauri; Meriläinen, Jouko; Eronen, Matti (September 2002). "The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2, interannual to centennial variability in summer temperatures for 7500 years". The Holocene. 12 (6): 681–687. Bibcode:2002Holoc..12..681H. doi:10.1191/0959683602hl581rp. S2CID 129520871.
  7. Zielinski, G. A.; Mayewski, P. A.; Meeker, L. D.; Whitlow, S.; Twickler, M. S.; Morrison, M.; Meese, D. A.; Gow, A. J.; Alley, R. B. (13 May 1994). "Record of Volcanism Since 7000 B.C. from the GISP2 Greenland Ice Core and Implications for the Volcano-Climate System". Science. 264 (5161): 948–952. Bibcode:1994Sci...264..948Z. doi:10.1126/science.264.5161.948. PMID 17830082. S2CID 21695750.
  8. Zielinski, Gregory A. (1995). "Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core". Journal of Geophysical Research. 100 (D10): 20937. Bibcode:1995JGR...10020937Z. doi:10.1029/95JD01751.
  9. Clausen, Henrik B.; Hammer, Claus U.; Hvidberg, Christine S.; Dahl-Jensen, Dorthe; Steffensen, Jørgen P.; Kipfstuhl, Josef; Legrand, Michel (30 November 1997). "A comparison of the volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye 3 Greenland ice cores". Journal of Geophysical Research: Oceans. 102 (C12): 26707–26723. Bibcode:1997JGR...10226707C. doi:10.1029/97JC00587.
  10. Langway, C. C.; Osada, K.; Clausen, H. B.; Hammer, C. U.; Shoji, H. (1995). "A 10-century comparison of prominent bipolar volcanic events in ice cores". Journal of Geophysical Research. 100 (D8): 16241. Bibcode:1995JGR...10016241L. doi:10.1029/95JD01175.
  11. Budner, Drew; Cole-Dai, Jihong (2003). "The number and magnitude of explosive volcanic eruptions between 904 and 1865 A.D.: Quantitative evidence from a new South Pole ice core" (PDF). In Robock, A.; Oppenheimer, C. (eds.). Volcanism and the Earth's Atmosphere. Geophysical Monograph Series. Vol. 139. American Geophysical Union. pp. 165–176. Bibcode:2003GMS...139..165B. doi:10.1029/139GM10. ISBN 978-0-87590-998-1. The number and magnitude of large explosive volcanic eruptions between 904 and 1865 A.D.: Quantitative evidence from a new South Pole ice core
  12. Cole-Dai, Jihong; Mosley-Thompson, Ellen; Thompson, Lonnie G. (27 July 1997). "Annually resolved southern hemisphere volcanic history from two Antarctic ice cores". Journal of Geophysical Research: Atmospheres. 102 (D14): 16761–16771. Bibcode:1997JGR...10216761C. doi:10.1029/97JD01394.
  13. Crowley, Thomas J.; Criste, Tamara A.; Smith, Neil R. (5 February 1993). "Reassessment of Crete (Greenland) ice core acidity/volcanism link to climate change". Geophysical Research Letters. 20 (3): 209–212. Bibcode:1993GeoRL..20..209C. doi:10.1029/93GL00207.
  14. Lisiecki, L. E.; Raymo, M. E. (January 2005). "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records" (PDF). Paleoceanography. 20 (1): PA1003. Bibcode:2005PalOc..20.1003L. doi:10.1029/2004PA001071. hdl:2027.42/149224. S2CID 12788441.
    Lisiecki, L. E.; Raymo, M. E. (May 2005). "Correction to "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records"". Paleoceanography. 20 (2): PA2007. Bibcode:2005PalOc..20.2007L. doi:10.1029/2005PA001164. S2CID 128995657.
    data: Lisiecki, Lorraine E; Raymo, Maureen E (2005). "Pliocene-Pleistocene stack of globally distributed benthic stable oxygen isotope records". Pangaea: 3 datasets. doi:10.1594/PANGAEA.704257. Supplement to Lisiecki, Lorraine E.; Raymo, Maureen E. (2005). "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records". Paleoceanography. 20 (1). Bibcode:2005PalOc..20.1003L. doi:10.1029/2004Pa001071. S2CID 12788441.
  15. Baillie, M.G.L. (1994). "Dendrochronology raises questions about the nature of the AD 536 dust-veil event". The Holocene. 4 (2): 212–7. Bibcode:1994Holoc...4..212B. doi:10.1177/095968369400400211. S2CID 140595125.
  16. "International Stratigraphic Chart" (PDF). International Commission on Stratigraphy. Retrieved 2009-12-23.
  17. Robock, A.; C.M. Ammann; L. Oman, D. Shindell; S. Levis; G. Stenchikov (2009). "Did the Toba volcanic eruption of ~74k BP produce widespread glaciation?". Journal of Geophysical Research. 114 (D10): D10107. Bibcode:2009JGRD..11410107R. doi:10.1029/2008JD011652.
  18. Brantley, Steven R. (1999-01-04). Volcanoes of the United States. United States Geological Survey. p. 30. ISBN 978-0-16-045054-9. OCLC 156941033. Retrieved 2008-09-12.
  19. Judy Fierstein; Wes Hildreth; James W. Hendley II; Peter H. Stauffer (1998). "Can Another Great Volcanic Eruption Happen in Alaska?". United States Geological Survey. Fact Sheet 075-98. Retrieved 2008-09-10.
  20. Fierstein, Judy; Wes Hildreth (2004-12-11). "The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska". Bulletin of Volcanology. Springer. 54 (8): 646. Bibcode:1992BVol...54..646F. doi:10.1007/BF00430778. S2CID 86862398.
  21. "Santa Maria". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-19.
  22. Hopkinson, Deborah (January 2004). "The Volcano That Shook the world: Krakatoa 1883". Scholastic.com. New York: Storyworks. 11 (4): 8.
  23. Oppenheimer, Clive (2003). "Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815". Progress in Physical Geography. 27 (2): 230–259. doi:10.1191/0309133303pp379ra. S2CID 131663534.
  24. Dai, Jihong; Mosley-Thompson, Ellen; Thompson, Lonnie G. (1991). "Ice core evidence for an explosive tropical volcanic eruption six years preceding Tambora". Journal of Geophysical Research: Atmospheres. 96 (D9): 17, 361–17, 366. Bibcode:1991JGR....9617361D. doi:10.1029/91jd01634.
  25. "Документ без названия". Archived from the original on 2011-09-30. Retrieved 2010-04-03.
  26. "Saderra Maso: Historical Taal". www.iml.rwth-aachen.de.
  27. Baker, P. E. (1967). "Historical and geological notes on Bouvetoya" (PDF). British Antarctic Survey Bulletin. 13: 71–84. Archived from the original (PDF) on 28 February 2012. Retrieved 17 June 2010. Abstract: it is suggested that "Thompson Island",... may have disappeared as a result of a volcanic eruption during the nineteenth century.
  28. BBC Timewatch: "Killer Cloud", broadcast 19 January 2007
  29. Haraldur Sigurdsson; S. Carey; C. Mandeville (1990). Assessment of mass, dynamics and environmental effects of the Minoan eruption of the Santorini volcano. Thera and the Aegean World III: Proceedings of the Third Thera Conference. Vol. II. pp. 100–12.
  30. "Huaynaputina". Global Volcanism Program. Smithsonian Institution. Retrieved 2008-12-29.
  31. Nemeth, Karoly; Shane J. Cronin; James D.L. White (2007). "Kuwae caldera and climate confusion". The Open Geology Journal. 1 (5): 7–11. Bibcode:2007OGJ.....1....7N. doi:10.2174/1874262900701010007.
  32. Gao, Chaochao; Robock, A.; Self, S.; Witter, J. B.; Steffenson, J. P.; Clausen, H. B.; Siggaard-Andersen, M.-L.; Johnsen, S.; Mayewski, P. A.; Ammann, C. (27 June 2006). "The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years". Journal of Geophysical Research. 111 (D12): D12107. Bibcode:2006JGRD..11112107G. doi:10.1029/2005JD006710. Retrieved 2010-03-19.
  33. Witter, J.B.; Self S. (January 2007). "The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release". Bulletin of Volcanology. 69 (3): 301–318. Bibcode:2007BVol...69..301W. doi:10.1007/s00445-006-0075-4. S2CID 129403009.
  34. Lavigne, Franck (4 September 2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences of the United States of America. 110 (42): 16742–16747. Bibcode:2013PNAS..11016742L. doi:10.1073/pnas.1307520110. PMC 3801080. PMID 24082132.
  35. "Mystery 13th Century eruption traced to Lombok, Indonesia". BBC News. 30 September 2013. Retrieved 1 October 2013.
  36. Oppenheimer, Clive (19 March 2003). "Ice core and palaeoclimatic evidence for the timing and nature of the great mid-13th century volcanic eruption". International Journal of Climatology. Royal Meteorological Society. 23 (4): 417–426. Bibcode:2003IJCli..23..417O. doi:10.1002/joc.891. S2CID 129835887.
  37. Yang, Qingyuan; Jenkins, Susanna F.; Lerner, Geoffrey A.; Li, Weiran; Suzuki, Takehiko; McLean, Danielle; Derkachev, A. N.; Utkin, I. V.; Wei, Haiquan; Xu, Jiandong; Pan, Bo (2021-10-23). "The Millennium Eruption of Changbaishan Tianchi Volcano is VEI 6, not 7". Bulletin of Volcanology. 83 (11): 74. Bibcode:2021BVol...83...74Y. doi:10.1007/s00445-021-01487-8. ISSN 1432-0819. S2CID 239461051.
  38. "Katla: Eruptive History". Global Volcanism Program. Smithsonian Institution.
  39. "Laki and Eldgjá—two good reasons to live in Hawai'". USGS – Hawaiian Volcano Observatory. 26 November 2008. Retrieved 2009-08-06.
  40. Dull, Robert A.; Southon, John R.; Kutterolf, Steffen; Anchukaitis, Kevin J.; Freundt, Armin; Wahl, David B.; Sheets, Payson; Amaroli, Paul; Hernandez, Walter; Wiemann, Michael C.; Oppenheimer, Clive (October 2019). "Radiocarbon and geologic evidence reveal Ilopango volcano as source of the colossal 'mystery' eruption of 539/40 CE" (PDF). Quaternary Science Reviews. 222: 105855. Bibcode:2019QSRv..22205855D. doi:10.1016/j.quascirev.2019.07.037. S2CID 202190161.
  41. "Taupo – Eruptive History". Global Volcanism Program. Smithsonian Institution. Retrieved 2008-03-16.
  42. "Summary of the eruptive history of Mt. Vesuvius". Osservatorio Vesuviano, Italian National Institute of Geophysics and Volcanology. Archived from the original on December 3, 2006. Retrieved 2006-12-08.
  43. "Somma-Vesuvius". Department of Physics, University of Rome. Archived from the original on 2011-04-12. Retrieved 2006-12-08.
  44. McConnell, Joseph R.; Sigl, Michael; Plunkett, Gill; Burke, Andrea; Kim, Woon Mi; Raible, Christoph C.; Wilson, Andrew I.; Manning, Joseph G.; Ludlow, Francis; Chellman, Nathan J.; Innes, Helen M.; Yang, Zhen; Larsen, Jessica F.; Schaefer, Janet R.; Kipfstuhl, Sepp; Mojtabavi, Seyedhamidreza; Wilhelms, Frank; Opel, Thomas; Meyer, Hanno; Steffensen, Jørgen Peder (7 July 2020). "Extreme climate after massive eruption of Alaska's Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom". Proceedings of the National Academy of Sciences. 117 (27): 15443–15449. Bibcode:2020PNAS..11715443M. doi:10.1073/pnas.2002722117. PMC 7354934. PMID 32571905.
  45. Johnston, E. N.; Sparks, R. S. J.; Phillips, J. C.; Carey, S. (July 2014). "Revised estimates for the volume of the Late Bronze Age Minoan eruption, Santorini, Greece". Journal of the Geological Society. 171 (4): 583–590. Bibcode:2014JGSoc.171..583J. doi:10.1144/jgs2013-113. ISSN 0016-7649. S2CID 129937513.
  46. McAneney, Jonny; Baillie, Mike (February 2019). "Absolute tree-ring dates for the Late Bronze Age eruptions of Aniakchak and Thera in light of a proposed revision of ice-core chronologies". Antiquity. 93 (367): 99–112. doi:10.15184/aqy.2018.165. S2CID 166461015.
  47. "An ancient Bronze Age village (3500 bp) destroyed by the pumice eruption in Avellino (Nola-Campania)". Archived from the original on 2012-06-18. Retrieved 2006-12-08.
  48. Latter, J. H.|| Lloyd, E. F.|| Smith, I. E. M.|| Nathan, S. (1992). Volcanic hazards in the Kermadec Islands and at submarine volcanoes between southern Tonga and New Zealand Archived 2010-05-22 at the Wayback Machine, Volcanic hazards information series 4. Wellington, New Zealand. Ministry of Civil Defence. 44 p.
  49. Arce, J. L.; Macías, J. L.; Vázquez-Selem, L. (1 February 2003). "The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: Stratigraphy and hazard implications". GSA Bulletin. 115 (2): 230–248. Bibcode:2003GSAB..115..230A. doi:10.1130/0016-7606(2003)115<0230:TKPEON>2.0.CO;2.
  50. Lin, Jiamei; Svensson, Anders; Hvidberg, Christine S.; Lohmann, Johannes; Kristiansen, Steffen; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder; Rasmussen, Sune Olander; Cook, Eliza; Kjær, Helle Astrid; Vinther, Bo M.; Fischer, Hubertus; Stocker, Thomas; Sigl, Michael; Bigler, Matthias; Severi, Mirko; Traversi, Rita; Mulvaney, Robert (2022). "Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka)". Climate of the Past. 18 (3): 485–506. Bibcode:2022CliPa..18..485L. doi:10.5194/cp-18-485-2022. S2CID 247480436.
  51. van den Bogaard, P (1995). "40Ar/(39Ar) ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrological significance". Earth and Planetary Science Letters. 133 (1–2): 163–174. Bibcode:1995E&PSL.133..163V. doi:10.1016/0012-821X(95)00066-L.
  52. P de Klerk; W Janke; P Kühn; M Theuerkauf (December 2008). "Environmental impact of the Laacher See eruption at a large distance from the volcano: Integrated palaeoecological studies from Vorpommern (NE Germany)". Palaeogeography, Palaeoclimatology, Palaeoecology. 270 (1–2): 196–214. Bibcode:2008PPP...270..196D. doi:10.1016/j.palaeo.2008.09.013.
  53. Baales, Michael; Jöris, Olaf; Street, Martin; Bittmann, Felix; Weninger, Bernhard; Wiethold, Julian (November 2002). "Impact of the Late Glacial Eruption of the Laacher See Volcano, Central Rhineland, Germany". Quaternary Research. 58 (3): 273–288. Bibcode:2002QuRes..58..273B. doi:10.1006/qres.2002.2379. S2CID 53973827.
  54. Forscher warnen vor Vulkan-Gefahr in der Eifel. Spiegel Online, 13. Februar 2007. Retrieved January 11, 2008
  55. Aramaki, Shigeo (1984). "Formation of the Aira Caldera, Southern Kyushu, ~22,000 Years Ago". Journal of Geophysical Research. 89 (B10): 8485–8501. Bibcode:1984JGR....89.8485A. doi:10.1029/JB089iB10p08485.
  56. Dunbar, Nelia W
  57. Wilson, Colin J. N. (2001). "The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview". Journal of Volcanology and Geothermal Research. 112 (1–4): 133–174. Bibcode:2001JVGR..112..133W. doi:10.1016/S0377-0273(01)00239-6.
  58. Manville, Vern & Wilson, Colin J. N. (2004). "The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response". New Zealand Journal of Geology & Geophysics. 47 (3): 525–547. doi:10.1080/00288306.2004.9515074.
  59. Wilson CJ, Blake S, Charlier BL, Sutton AN (2006). "The 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand: Development, Characteristics and Evacuation of a Large Rhyolitic Magma Body". Journal of Petrology. 47 (1): 35–69. Bibcode:2005JPet...47...35W. doi:10.1093/petrology/egi066.
  60. Richard Smith, David J. Lowe and Ian Wright. 'Volcanoes – Lake Taupo', Te Ara – the Encyclopedia of New Zealand, updated 16-Apr-2007
  61. Giordano, Guido; Doronzo, Domenico M. (30 June 2017). "Sedimentation and mobility of PDCs: a reappraisal of ignimbrites' aspect ratio". Scientific Reports. 7 (1): 4444. Bibcode:2017NatSR...7.4444G. doi:10.1038/s41598-017-04880-6. PMC 5493644. PMID 28667271.
  62. De Vivo, B.; Rolandi, G.; Gans, P. B.; Calvert, A.; Bohrson, W. A.; Spera, F. J.; Belkin, H. E. (November 2001). "New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)". Mineralogy and Petrology. Springer Wien. 73 (1–3): 47–65. Bibcode:2001MinPe..73...47D. doi:10.1007/s007100170010. S2CID 129762185.
  63. Froggatt, P. C. & Lowe, D. J. (1990). "A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age". New Zealand Journal of Geology and Geophysics. 33: 89–109. doi:10.1080/00288306.1990.10427576.
  64. Mark, Darren F.; Renne, Paul R.; Dymock, Ross C.; Smith, Victoria C.; Simon, Justin I.; Morgan, Leah E.; Staff, Richard A.; Ellis, Ben S.; Pearce, Nicholas J. G. (2017-04-01). "High-precision 40Ar/39Ar dating of pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes boundary". Quaternary Geochronology. 39: 1–23. doi:10.1016/j.quageo.2017.01.002. ISSN 1871-1014. S2CID 13742673.
  65. Chesner, C.A.; Westgate, J.A.; Rose, W.I.; Drake, R.; Deino, A. (March 1991). "Eruptive History of Earth's Largest Quaternary caldera (Toba, Indonesia) Clarified" (PDF). Geology. 19 (3): 200–203. Bibcode:1991Geo....19..200C. doi:10.1130/0091-7613(1991)019<0200:EHOESL>2.3.CO;2. Retrieved 2010-01-20.
  66. Crick, Laura; Burke, Andrea; Hutchison, William; Kohno, Mika; Moore, Kathryn A.; Savarino, Joel; Doyle, Emily A.; Mahony, Sue; Kipfstuhl, Sepp; Rae, James W. B.; Steele, Robert C. J. (2021-10-18). "New insights into the ~ 74ka Toba eruption from sulfur isotopes of polar ice cores". Climate of the Past. 17 (5): 2119–2137. Bibcode:2021CliPa..17.2119C. doi:10.5194/cp-17-2119-2021. ISSN 1814-9324. S2CID 239203480.
  67. Takarada, Shinji; Hoshizumi, Hideo (23 June 2020). "Distribution and Eruptive Volume of Aso-4 Pyroclastic Density Current and Tephra Fall Deposits, Japan: A M8 Super-Eruption". Frontiers in Earth Science. 8: 170. Bibcode:2020FrEaS...8..170T. doi:10.3389/feart.2020.00170. S2CID 219827774.
  68. Froggatt, P. C.; Nelson, C. S.; Carter, L.; Griggs, G.; Black, K. P. (13 February 1986). "An exceptionally large late Quaternary eruption from New Zealand". Nature. 319 (6054): 578–582. Bibcode:1986Natur.319..578F. doi:10.1038/319578a0. S2CID 4332421. The minimum total volume of tephra is 1,200 km³ but probably nearer 2,000 km³, ...
  69. Bryan, Scott E.; Teal R. Riley; Dougal A. Jerram; Christopher J. Stephens; Philip T. Leat (2002). "Silicic volcanism: An undervalued component of large igneous provinces and volcanic rifted margins" (PDF). Geological Society of America (Special Paper 362). Retrieved 2010-03-23.
  70. Bailet, R. A. & Carr, R. G. (1994). "Physical geology and eruptive history of the Matahina Ignimbrite, Taupo Volcanic Zone, North Island, New Zealand". New Zealand Journal of Geology and Geophysics. 37 (3): 319–344. doi:10.1080/00288306.1994.9514624.
  71. Siebert, Lee; Simkin, Tom; Kimberly, Paul (9 February 2011). Volcanoes of the World: Third Edition. ISBN 9780520947931.
  72. Briggs, R.M.; Gifford, M.G.; Moyle, A.R.; Taylor, S.R.; Normaff, M.D.; Houghton, B.F.; Wilson, C.J.N. (1993). "Geochemical zoning and eruptive mixing in ignimbrites from Mangakino volcano, Taupo Volcanic Zone, New Zealand". Journal of Volcanology and Geothermal Research. 56 (3): 175–203. Bibcode:1993JVGR...56..175B. doi:10.1016/0377-0273(93)90016-K.
  73. "Cerro Galan Caldera". Retrieved 2018-07-17.
  74. "Reykjanes". Global Volcanism Program. Retrieved 2010-04-20.
  75. Gudmundsson, Magnús T.; Thórdís Högnadóttir (January 2007). "Volcanic systems and calderas in the Vatnajökull region, central Iceland: Constraints on crustal structure from gravity data". Journal of Geodynamics. 43 (1): 153–169. Bibcode:2007JGeo...43..153G. doi:10.1016/j.jog.2006.09.015.
  76. T. Thordarson & G. Larsen (January 2007). "Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history" (PDF). Journal of Geodynamics. 43 (1): 118–152. Bibcode:2007JGeo...43..118T. doi:10.1016/j.jog.2006.09.005.
  77. "Surtsey Nomination Report 2007" (PDF). Surtsey, Island. Retrieved 2010-03-30.
  78. Cole, J.W. (1990). "Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand". Bulletin of Volcanology. 52 (6): 445–459. Bibcode:1990BVol...52..445C. doi:10.1007/BF00268925. S2CID 129091056.
  79. L. M. Parson & I. C. Wright (1996). "The Lau-Havre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading". Tectonophysics. 263 (1–4): 1–22. Bibcode:1996Tectp.263....1P. doi:10.1016/S0040-1951(96)00029-7.
  80. Krippner, Stephen J. P., Briggs, Roger M., Wilson, Colin J. N., Cole, James W. (1998). "Petrography and geochemistry of lithic fragments in ignimbrites from the Mangakino Volcanic Centre: implications for the composition of the subvolcanic crust in western Taupo Volcanic Zone, New Zealand". New Zealand Journal of Geology and Geophysics. 41 (2): 187–199. doi:10.1080/00288306.1998.9514803.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  81. The South Aegean Active Volcanic Arc: Present Knowledge and Future Perspectives By Michaēl Phytikas, Georges E. Vougioukalakis, 2005, Elsevier, 398 pages, ISBN 0-444-52046-5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.