History of variational principles in physics
In physics, a variational principle is an alternative method for determining the state or dynamics of a physical system, by identifying it as an extremum (minimum, maximum or saddle point) of a function or functional. This article describes the historical development of such principles.
Antiquity
Variational principles are found among earlier ideas in surveying and optics. The rope stretchers of ancient Egypt stretched corded ropes between two points to measure the path which minimized the distance of separation, and Claudius Ptolemy, in his Geographia (Bk 1, Ch 2), emphasized that one must correct for "deviations from a straight course"; in ancient Greece Euclid states in his Catoptrica that, for the path of light reflecting from a mirror, the angle of incidence equals the angle of reflection; and Hero of Alexandria later showed that this path was the shortest length and least time.[1]
17th-18th century
Optics
The earlier ideas of variational principles in optics were generalized to refraction by Pierre de Fermat, who, in the 17th century, refined the principle to "light travels between two given points along the path of shortest time"; now known as the principle of least time or Fermat's principle.
Principle of least action
Its generalization to mechanics, the principle of least action is commonly attributed to Pierre Louis Maupertuis, who wrote about it in 1744 and 1746, although the true priority is less clear. In application to physics, Maupertuis suggested that the quantity to be minimized was the product of the duration (time) of movement within a system by the "vis viva", twice what we now call the kinetic energy of the system.
Leonhard Euler gave a formulation of the least action principle in 1744. He writes
- "Let the mass of the projectile be M, and let its squared velocity resulting from its height be while being moved over a distance ds. The body will have a momentum that, when multiplied by the distance ds, will give , the momentum of the body integrated over the distance ds. Now I assert that the curve thus described by the body to be the curve (from among all other curves connecting the same endpoints) that minimizes or, provided that M is constant, ."[Note 1]
As Euler states, is the integral of the momentum over distance traveled (note that here contrary to usual notation denotes the squared velocity) which, in modern notation, equals the reduced action . Thus, Euler made an equivalent and (apparently) independent statement of the variational principle in the same year as Maupertuis, albeit slightly later. In rather general terms he wrote that "Since the fabric of the Universe is most perfect and is the work of a most wise Creator, nothing whatsoever takes place in the Universe in which some relation of maximum and minimum does not appear." However, Euler did not claim any priority, as the following episode shows.
Maupertuis' priority was disputed in 1751 by the mathematician Samuel König, who claimed that it had been invented by Gottfried Leibniz in 1707. Although similar to many of Leibniz's arguments, the principle itself has not been documented in Leibniz's works. König himself showed a copy of a 1707 letter from Leibniz to Jacob Hermann with the principle, but the original letter has been lost. In contentious proceedings, König was accused of forgery, and even the King of Prussia entered the debate, defending Maupertuis, while Voltaire defended König. Euler, rather than claiming priority, was a staunch defender of Maupertuis, and Euler himself prosecuted König for forgery before the Berlin Academy on 13 April 1752. The claims of forgery were re-examined 150 years later, and archival work by C.I. Gerhardt in 1898 and W. Kabitz in 1913 uncovered other copies of the letter, and three others cited by König, in the Bernoulli archives.
Lagrangian mechanics
Euler continued to write on the topic; in his Reflexions sur quelques loix generales de la nature (1748), he called the quantity "effort". His expression corresponds to what we would now call potential energy, so that his statement of least action in statics is equivalent to the principle that a system of bodies at rest will adopt a configuration that minimizes total potential energy.
The full importance of the principle to mechanics was stated by Joseph Louis Lagrange in 1760, although the variational principle was not used to derive the equations of motion until almost 75 years later, when William Rowan Hamilton in 1834 and 1835 applied the variational principle to the function to obtain what are now called the Euler–Lagrange equations.
Morse theory
In 1842, Carl Gustav Jacobi tackled the problem of whether the variational principle found minima or other extrema (e.g. a saddle point); most of his work focused on geodesics on two-dimensional surfaces. The first clear general statements were given by Marston Morse in the 1920s and 1930s, leading to what is now known as Morse theory. For example, Morse showed that the number of conjugate points in a trajectory equaled the number of negative eigenvalues in the second variation of the Lagrangian.
Other extremal principles of classical mechanics have been formulated, such as Gauss' principle of least constraint and its corollary, Hertz's principle of least curvature.
20th century
In relativity
The Einstein–Hilbert action was proposed in 1915 by David Hilbert to reproduce the vacuum Einstein field equations of general relativity, given by
- ,
where is the determinant of a spacetime Lorentz metric and is the scalar curvature.
In quantum mechanics
Several approaches were also considered for quantum mechanics. Inspired by 1933 paper by Paul Dirac, Richard Feynman developed 1948 the path integral formulation, that linked the Lagrangian formalism with the Hamiltonian formalism of quantum mechanics.
In quantum chemistry and condensed matter physics, variational methods were developed to study atoms, molecules, nuclei and solids under a quantum mechanical framework. These include Hartree–Fock method, the density matrix renormalization group, and the Ritz method.
21st century
Variational methods are exploited in many modern software to simulate matter and light.
In 2013, the variational quantum eigensolver was proposed for quantum computers, allowing noisy intermediate-scale quantum (NISQ) computers to exploit quantum phenomena to simulate atoms and small molecules using variational methods.
Footnote
- Original: "Sit massa corporis projecti ==M, ejusque, dum spatiolum == ds emetitur, celeritas debita altitudini == v; erit quantitas motus corporis in hoc loco == ; quae per ipsum spatiolum ds multiplicata, dabit motum corporis collectivum per spatiolum ds. Iam dico lineam a corpore descriptam ita fore comparatam, ut, inter omnes alias lineas iisdem terminis contentas, sit , seu, ob M constans, minimum."
References
- Kline, Morris (1972). Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press. pp. 167–168. ISBN 0-19-501496-0.
Notes
- ^ P.L.N. de Maupertuis, Accord de différentes lois de la nature qui avaient jusqu'ici paru incompatibles. (1744) Mém. As. Sc. Paris p. 417.
- ^ P.L.N. de Maupertuis, Le lois de mouvement et du repos, déduites d'un principe de métaphysique. (1746) Mém. Ac. Berlin, p. 267.
- ^ Leonhard Euler, Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes. (1744) Bousquet, Lausanne & Geneva. 320 pages. Reprinted in Leonhardi Euleri Opera Omnia: Series I vol 24. (1952) C. Cartheodory (ed.) Orell Fuessli, Zurich. scanned copy of complete text at The Euler Archive, Dartmouth.
- ^ W.R. Hamilton, "On a General Method in Dynamics.", Philosophical Transactions of the Royal Society Part I (1834) p.247-308; Part II (1835) p. 95-144. (From the collection Sir William Rowan Hamilton (1805-1865): Mathematical Papers edited by David R. Wilkins, School of Mathematics, Trinity College, Dublin 2, Ireland. (2000); also reviewed as On a General Method in Dynamics)
- ^ G.C.J. Jacobi, Vorlesungen über Dynamik, gehalten an der Universität Königsberg im Wintersemester 1842-1843. A. Clebsch (ed.) (1866); Reimer; Berlin. 290 pages, available online Œuvres complètes volume 8 at Gallica-Math from the Gallica Bibliothèque nationale de France.
- ^ Gerhardt CI. (1898) "Über die vier Briefe von Leibniz, die Samuel König in dem Appel au public, Leide MDCCLIII, veröffentlicht hat", Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, I, 419–427.
- ^ Kabitz W. (1913) "Über eine in Gotha aufgefundene Abschrift des von S. König in seinem Streite mit Maupertuis und der Akademie veröffentlichten, seinerzeit für unecht erklärten Leibnizbriefes", Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, II, 632–638.
- ^ Marston Morse (1934). "The Calculus of Variations in the Large", American Mathematical Society Colloquium Publication 18; New York.
- ^ Chris Davis. Idle theory (1998)
- ^ Euler, Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes: Additamentum II, Ibid.
- ^ J J O'Connor and E F Robertson, "The Berlin Academy and forgery", (2003), at The MacTutor History of Mathematics archive.
- Cassel, Kevin W.: Variational Methods with Applications in Science and Engineering, Cambridge University Press, 2013.