Acenaphthylene
Acenaphthylene, a polycyclic aromatic hydrocarbon is an ortho- and peri-fused tricyclic hydrocarbon. The molecule resembles naphthalene with positions 1 and 8 connected by a -CH=CH- unit. It is a yellow solid.[3] Unlike many polycyclic aromatic hydrocarbons, it has no fluorescence.
| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
Acenaphthylene[1] | |||
Other names
Cyclopenta[de]naphthalene Acenaphthalene Tricyclo[6.3.1.04,12]dodeca-1(12),2,4,6,8,10-hexaene Tricyclo[6.3.1.04,12]dodecahexaene | |||
Identifiers | |||
3D model (JSmol) |
|||
ChEBI | |||
ChemSpider | |||
ECHA InfoCard | 100.005.380 | ||
PubChem CID |
|||
UNII | |||
CompTox Dashboard (EPA) |
|||
| |||
| |||
Properties | |||
C12H8 | |||
Molar mass | 152.196 g·mol−1 | ||
Appearance | Yellow crystals | ||
Density | 0.8987 g cm−3 | ||
Melting point | 91.8 °C (197.2 °F; 364.9 K) | ||
Boiling point | 280 °C (536 °F; 553 K) | ||
Insoluble | |||
Solubility in ethanol | very soluble | ||
Solubility in diethyl ether | very soluble | ||
Solubility in benzene | very soluble | ||
Solubility in chloroform | soluble | ||
Thermochemistry[2] | |||
Heat capacity (C) |
166.4 J mol−1 K−1 | ||
Enthalpy of fusion (ΔfH⦵fus) |
186.7 kJ/mol | ||
Enthalpy of vaporization (ΔfHvap) |
69 kJ/mol | ||
Enthalpy of sublimation (ΔfHsublim) |
71.06 kJ/mol | ||
Hazards | |||
GHS labelling: | |||
Danger | |||
H302, H310, H315, H319, H330, H335 | |||
P260, P261, P262, P264, P270, P271, P280, P284, P301+P312, P302+P350, P302+P352, P304+P340, P305+P351+P338, P310, P312, P320, P321, P322, P330, P332+P313, P337+P313, P361, P362, P363, P403+P233, P405, P501 | |||
Flash point | 122 °C (252 °F; 395 K) | ||
Related compounds | |||
Related compounds |
acenaphthene | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references |
Occurrence
Acenaphthylene occurs as about 2% of coal tar. It is produced industrially by gas phase dehydrogenation of acenaphthene.[3]
Reactions
Hydrogenation gives the more saturated compound acenaphthene. Chemical reduction affords the radical anion sodium or potassium acenaphthalenide, which is used as a strong reductant (E = -2.26 V vs FC).[4]
It functions as a ligand for some organometallic compounds.[5]
Uses
Polymerisation of acenaphthylene with acetylene in the presence of a Lewis acid catalyst gives electrically conductive polymers. Acenaphthylene possesses excellent properties as an antioxidant in cross-linked polyethylene and ethylene-propylene rubber. Thermal trimerization of acenaphthylene leads to decacyclene, which can be further processed to sulfur dyes.[6]
Toxicity
The no-observed-effect-level of acenaphthylene after repeated 28-day oral administration to both male and female rats was found to be 4 mg/kg/day.[7]
References
- Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 210. doi:10.1039/9781849733069-00130. ISBN 978-0-85404-182-4.
- John Rumble (June 18, 2018). CRC Handbook of Chemistry and Physics (99th ed.). CRC Press. pp. 5–3. ISBN 978-1138561632.
- Griesbaum, Karl; Behr, Arno; Biedenkapp, Dieter; Voges, Heinz-Werner; Garbe, Dorothea; Paetz, Christian; Collin, Gerd; Mayer, Dieter; Höke (2000). "Hydrocarbons". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_227.
- N. G. Connelly and W. E. Geiger, "Chemical Redox Agents for Organometallic Chemistry", Chem. Rev. 1996, 96, 877-910. doi:10.1021/cr940053x
- Motoyama, Yukihiro; Itonaga, Chikara; Ishida, Toshiki; Takasaki, Mikihiro; Nagashima, Hideo (2005). "Catalytic Reduction of Amides to Amines with Hydrosilanes Using a Triruthenium Cluster as the Catalyst". 82: 188. doi:10.15227/orgsyn.082.0188.
{{cite journal}}
: Cite journal requires|journal=
(help) - Ullmann, 4th ed., 21, 70
- Tanabe, S.; et al. (2017). "Toxicity of repeated 28-day oral administration of acenaphthylene in rats". Fundamental Toxicological Sciences. 4 (6): 247–259. doi:10.2131/fts.4.247.