Due to modern techniques of DNA analysis, many genomes have been sequenced and analyzed. A famous example is the human genome through the Human Genome Project.
Human Genome Project
The human genome project was an international scientific research effort to fully map out the human genome. This project was started by James D. Watson at the US Institute of Health, but research centers worked on the project all over the world; such as France, Germany, Japan, China, the United Kingdom, and India. So far about 92.3% of the genome has been sequenced, but its difficult to determine due to non-coding sequences of DNA or "junk" DNA.
The genome project uncovered some key findings such as the genome of the human race is 99.9% alike.
Homology
Sequencing genomes allow scientists to identify homologous proteins and establish evolutionary relationships. Furthermore if a newly discovered protein is homologous to a known protein, through homology scientists can make an educated guess on how the new protein functions.
The Impact of Sequencing on Medicine
The ability to quickly sequence the human genome in the future may have significant impacts on medicine. Knowledge about genes and an individual's DNA have already given scientists a way to predict the likelihood of certain diseases among individuals. This also allows one to analyze the chromosomal structure, the effects of evolution upon the genome, and protein structures and functions. In the future, gene therapy, genomic medicine, and preventative treatments may reduce the likelihood of disease and allow manufacturers to tailor drugs to specific individuals.
Sequenced Eukaryotic Genomes
Eukaryotes are organisms containing cells that enclose complex organelles within a well-defined cell membrane. The defining characteristic that sets Eukaryotes and Prokaryotes apart is Eukaryotes' nucleus, or nuclear envelope, in which an organism's genetic information is contained.
The first eukaryotic genome to be sequenced is that of Saccharomyces cerevisiae (S. cerevisiae) in 1996, and it is commonly known as brewer's yeast. S. cerevisiae is the most useful type of yeast due to its utility in baking and brewing, so it is the most studied eukaryotic model organisms in molecular and cell biology, similar to E. coli's role in the study of prokayortic organisms. Many proteins that are important to humans are studied by examining their homologs in yeasts. For example, signaling proteins and protein-processing enzymes are all discovered through the help of yeast genome.
Other fully sequenced organisms include: roundworm, fruitfly, pufferfish (first vertebrate to be sequenced after humans), and Arabidopsis thaliana.
The tables from below are taken from Wikipedia's list of sequenced eukaryotic genomes.
Protists
Chromista
The Chromista are a group of protists that contains the algal phyla Heterokontophyta, Haptophyta and Cryptophyta. Members of this group are mostly studied for evolutionary interest.
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Guillardia theta | Cryptomonad | Model organism | 0.551 Mb (nucleomorph genome only) |
464[1] | Canadian Institute of Advanced Research, Philipps-University Marburg and the University of British Columbia | 2001[1] |
Thalassiosira pseudonana Strain:CCMP 1335 |
Diatom | 2.5 Mb | 11,242[2] | Joint Genome Institute and the University of Washington | 2004[2] | |
Phaeodactylum tricornutum Strain: CCAP1055/1 |
Diatom | 27.4 Mb | 10,402 | Joint Genome Institute | 2008 [3] |
Alveolata
Alveolata are a group of protists which includes the Ciliophora, Apicomplexa and Dinoflagellata. Members of this group are of particular interest to science as the cause of serious human and livestock diseases.
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Babesia bovis | Parasitic protozoan | Cattle pathogen | 8.2 Mb | 3,671 | 2007[4] | |
Cryptosporidium hominis Strain:TU502 |
Parasitic protozoan | Human pathogen | 10.4 Mb | 3,994[5] | Virginia Commonwealth University | 2004[5] |
Cryptosporidium parvum C- or genotype 2 isolate |
Parasitic protozoan | Human pathogen | 16.5 Mb | 3,807[6] | UCSF and University of Minnesota | 2004[6] |
Paramecium tetraurelia | Ciliate | Model organism | 72 Mb | 39,642[7] | Genoscope | 2006[7] |
Plasmodium falciparum Clone:3D7 |
Parasitic protozoan | Human pathogen (malaria) | 22.9 Mb | 5,268[8] | Malaria Genome Project Consortium | 2002[8] |
Plasmodium knowlesi | Parasitic protozoan | Primate pathogen (malaria) | 23.5 Mb | 5,188[9] | 2008[9] | |
Plasmodium vivax | Parasitic protozoan | Human pathogen (malaria) | 26.8 Mb | 5,433[10] | 2008[10] | |
Plasmodium yoelii yoelii Strain:17XNL |
Parasitic protozoan | Rodent pathogen (malaria) | 23.1 Mb | 5,878[11] | TIGR and NMRC | 2002[11] |
Tetrahymena thermophila | Ciliate | Model organism | 104 Mb | 27,000[12] | 2006[12] | |
Theileria parva Strain:Muguga |
Parasitic protozoan | Cattle pathogen (African east coast fever) | 8.3 Mb | 4,035[13] | TIGR and the International Livestock Research Institute | 2005[13] |
Theileria annulata Ankara clone C9 |
Parasitic protozoan | Cattle pathogen | 8.3 Mb | 3,792 | Sanger | 2005[14] |
Excavata
Excavata is a group of related free living and symbiotic protists; it includes the Metamonada, Loukozoa, Euglenozoa and Percolozoa. They are researched for their role in human disease.
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Leishmania major Strain:Friedlin |
Parasitic protozoan | Human pathogen | 32.8 Mb | 8,272[15] | Sanger Institute | 2005[15] |
Giardia lamblia | Parasitic protozoan | Human pathogen | 11.7 Mb | 6,470[16] | 2007[16] | |
Trichomonas vaginalis | Parasitic protozoan | Human pathogen (Trichomoniasis) | 160 Mb | 59,681[17] | TIGR | 2007[17] |
Trypanosoma brucei Strain:TREU927/4 GUTat10.1 |
Parasitic protozoan | Human pathogen (Sleeping sickness) | 26 Mb | 9,068 [18] | Sanger Institute and TIGR | 2005[18] |
Trypanosoma cruzi Strain:CL Brener TC3 |
Parasitic protozoan | Human pathogen (Chagas disease) | 34 Mb | 22,570[19] | TIGR, Seattle Biomedical Research Institute and Uppsala University | 2005[19] |
Amoebozoa
Amoebozoa are a group of motile amoeboid protists, members of this group move or feed by means of temporary projections, called pseudopods. The best known member of this group is the slime mold which has been studied for centuries; other members include the Archamoebae, Tubulinea and Flabellinea. Some Amoeboza cause disease.
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Dictyostelium discoideum Strain:AX4 |
Slime mold | Model organism | 34 Mb | 12,500[20] | Consortium from University of Cologne, Baylor College of Medicine and the Sanger Centre | 2005[20] |
Entamoeba histolytica HM1:IMSS |
Parasitic protozoan | Human pathogen (amoebic dysentery) | 23.8 Mb | 9,938[21] | TIGR, Sanger Institute and the London School of Hygiene and Tropical Medicine | 2005[21] |
Plants
Higher plants
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Arabidopsis thaliana Ecotype:Columbia |
Wild mustard | Model plant | 120 Mb | 25,498[22] | Arabidopsis Genome Initiative[23] | 2000[22] |
Brassica napus | Rapeseed | Oil plant | 1,100 Mb | Bayer CropScience | 2009[24] | |
Oryza sativa ssp indica |
Rice | Crop and model organism | 420 Mb | 32-50,000[25] | Beijing Genomics Institute, Zhejiang University and the Chinese Academy of Sciences | 2002[25] |
Oryza sativa ssp japonica |
Rice | Crop and model organism | 466 Mb | 46,022-55,615[26] | Syngenta and Myriad Genetics | 2002[26] |
Ostreococcus tauri | Green alga | Simple eukaryote | 12.6 Mb | Laboratoire Arago | 2006[27] | |
Physcomitrella patens | Bryophyte | Model organism
early diverging land plant |
500 Mb | 39,458[28] | US Department of Energy Office of Science Joint Genome Institute | 2008[28] |
Populus trichocarpa | Balsam poplar or Black Cottonwood | Carbon sequestration, model tree, commercial use (timber), and comparison to A. thaliana | 550 Mb | 45,555[29] | The International Poplar Genome Consortium | 2006[29] |
Vitis vinifera | Grapevine PN40024 | Fruit crop | 490 Mb[30] | 30,434[30] | The French-Italian Public Consortium for Grapevine Genome Characterization | 2007[30] |
Zea mays ssp mays |
Corn (maize) | Fruit crop | 2,800 Mb | 50,000-60,000 | NSF | 2008[31] |
Algae
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Cyanidioschyzon merolae Strain:10D |
Red alga | Simple eukaryote | 16.5 Mb | 5,331[32] | University of Tokyo, Rikkyo University, Saitama University and Kumamoto University | 2004[32] |
Thalassiosira pseudonoana[33] | Heterokont | |||||
Chlamydomonas reinhardtii[34] | Model organism | 2007[34] | ||||
Ostreococcus tauri[33] | Chlorophyte |
Fungi
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Ashbya gossypii Strain:ATCC 10895 |
Fungus | Plant pathogen | 9.2 Mb | 4,718[35] | SyngentaAG and University of Basel | 2004[35] |
Aspergillus fumigatus Strain:Af293 |
Fungus | Human pathogen | 29.4 Mb | 9,926[36] | Sanger Institute, University of Manchester, TIGR, Institut Pasteur, Nagasaki University, University of Salamanca and OpGen | 2005[36] |
Aspergillus nidulans Strain:FGSC A4 |
Fungus | Model organism | 30 Mb | 9,500[37] | 2005[37] | |
Aspergillus niger Strain:CBS 513.88 |
Fungus | Biotechnology - fermentation | 33.9 Mb | 14,165[38] | 2007[38] | |
Aspergillus oryzae Strain:RIB40 |
Fungus | Used to ferment soy | 37 Mb | 12,074[39] | National Institute of Technology and Evaluation | 2005[39] |
Candida glabrata Strain:CBS138 |
Fungus | Human pathogen | 12.3 Mb | 5,283[40] | Génolevures Consortium [41] | 2004[40] |
Cryptococcus (Filobasidiella) neoformans JEC21 |
Fungus | Human pathogen | 20 Mb | 6,500[42] | TIGR and Stanford University | 2005[42] |
Debaryomyces hansenii Strain:CBS767 |
Yeast | Cheese ripening | 12.2 Mb | 6,906[40] | Génolevures Consortium | 2004[40] |
Encephalitozoon cuniculi | Microsporidium | Human pathogen | 2.9 Mb | 1,997[43] | Genoscope and Université Blaise Pascal | 2001[43] |
Kluyveromyces lactis Strain:CLIB210 |
Yeast | 10-12 Mb | 5,329[40] | Génolevures Consortium | 2004[40] | |
Magnaporthe grisea | Fungus | Plant pathogen | 37.8 Mb | 11,109[44] | 2005[44] | |
Neurospora crassa | Fungus | Model eukaryote | 40 Mb | 10,082[37] | Broad Institute, Oregon Health and Science University, University of Kentucky, and the University of Kansas | 2003[37] |
Saccharomyces cerevisiae Strain:S288C |
Baker's yeast | Model eukaryote | 12.1 Mb | 6,294[45] | International Collaboration for the Yeast Genome Sequencing[46] | 1996[45] |
Schizosaccharomyces pombe Strain:972h |
Yeast | Model eukaryote | 14 Mb | 4,824[47] | Sanger Institute and Cold Spring Harbor Laboratory | 2002[47] |
Yarrowia lipolytica Strain:CLIB99 |
Yeast | Industrial uses | 20 Mb | 6,703[40] | Génolevures Consortium | 2004[40] |
Animals
Mammals
Organism | Type | Shotgun Coverage | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Bos taurus | Cow | 6* | 3.0 Gb[48][49] | 22000[50] | Cattle Genome Sequencing International Consortium | 2009 |
Canis lupus familiaris | Dog | 7.6* | 2.4 Gb[51] | 19,300[51] | Broad Institute and Agencourt Bioscience | 2005[51] |
Cavia porcellus | Guinea Pig | 2* | 3.4 Gb | The Genome Sequencing Platform, The Genome Assembly Team[49] | ||
Dasypus novemcinctus | Nine-banded Armadillo | 2* [52] | 3.0 Gb | Broad Institute[49] | ||
Echinops telfairi | Hedgehog-Tenrec | 2* [52] | Broad Institute | |||
Equus caballus | Horse | 6.8* | 2.1 Gb [49] | Broad Institute et al.[49] | 2007 [53] | |
Erinaceus europaeus | Western European Hedgehog | 2* [52] | Broad Institute | |||
Felis catus | Cat | 2* | 3 Gb | 20,285 | The Genome Sequencing Platform, The Genome Assembly Team[49] | 2007[54] |
Homo sapiens | Human | 3.2 Gb [55] | 25,000[55] | Human Genome Project Consortium and Celera Genomics | Draft 2001[56][57] Complete 2006[58] | |
Loxodonta africana | African Elephant | 2* [52] | 3 Gb | Broad Institute | ||
Macaca mulatta | Rhesus Macaque | 6* | Macaque Genome Sequencing Consortium[49] | |||
Microcebus murinus | Gray Mouse Lemur | 2* [52] | The Genome Sequencing Platform, The Genome Assembly Team[49] | |||
Monodelphis domestica | Gray Short-tailed Opossum | 3.5 Gb | 18 - 20,000 | Broad Institute et al. | 2007[49][59] | |
Mus musculus Strain: C57BL/6J |
Mouse | 2.5 Gb | 24,174[60] | International Collaboration for the Mouse Genome Sequencing[61] | 2002[60] | |
Myotis lucifugus | Little Brown Bat | 2* [49] | Broad Institute | |||
Ochotona princeps | American Pika | 2* [52] | Broad Institute | |||
Ornithorhynchus anatinus [62] | Platypus | 6* [49] | Washington University | |||
Oryctolagus cuniculus | Rabbit | 2* [52] | 2.5 Gb | Broad Institute et al. [49] | ||
Otolemur garnettii | Small-eared Galago, or Bushbaby | 2* [52] | Broad Institute | |||
Pan troglodytes | Chimpanzee | 6* [49] | 3.1 Gb | Chimpanzee Sequencing and Analysis Consortium | 2005[63] | |
Pongo pygmaeus | Orangutan | 3.0 Gb | Institute for Molecular Biotechnology [49] | |||
Rattus norvegicus | Rat | 1.8* or better | 2.8 Gb [49] | 21,166[64] | Rat Genome Sequencing Project Consortium | 2004[64] |
Sorex araneus | European Shrew | 2* [52] | 3.0 Gb [49] | The Genome Sequencing Platform, The Genome Assembly Team[49] | ||
Spermophilus tridecemlineatus | Thirteen-lined Ground Squirrel | 2* | The Genome Sequencing Platform, The Genome Assembly Team[49] | |||
Tupaia belangeri | Northern Tree Shrew | 2* | Broad Institute[49] | |||
Insects
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Anopheles gambiae Strain: PEST |
Mosquito | Vector of malaria | 278 Mb | 13,683[65] | Celera Genomics and Genoscope | 2002[65] |
Apis mellifera | Honey bee | Model for eusocial behavior | 1800 Mb | 10,157[66] | The Honeybee Genome Sequencing Consortium | 2006[66] |
Bombyx mori Strain:p50T |
Moth (domestic silk worm) | Silk production | 530 Mb | University of Tokyo and National Institute of Agrobiological Sciences | 2004[67] | |
Drosophila melanogaster | Fruit fly | Model animal | 165 Mb | 13,600[68] | Celera, UC Berkeley, Baylor College of Medicine, European DGP | 2000[68] |
Nematodes
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Caenorhabditis briggsae | Nematode worm | For comparison with C. elegans | 104 Mb | 19,500[69] | Washington University, Sanger Institute and Cold Spring Harbor Laboratory | 2003[69] |
Caenorhabditis elegans Strain:Bristol N2 |
Nematode worm | Model animal | 100 Mb | 19,000[70] | Washington University and the Sanger Institute | 1998[70] |
Meloidogyne hapla | Northern root-knot nematode | Vegetable pathogen | 54 Mb | 14,420[71] | 2008[71] | |
Meloidogyne incognita | Southern root-knot nematode | Plant pathogen | 86 Mb | 19,212[72] | INRA, Genoscope and International M.incognita Genome Consortium[73] | 2008[72] |
Pristionchus pacificus | Nematode worm | Model invertebrate | 169 Mb | 23,500[74] | Max-Planck Institute for Developmental Biology &
Genome Sequencing Center, Washington University School of Medicine |
2008[74] |
Other animals
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Ciona intestinalis | Tunicate | Simple chordate | 116.7 Mb | 16,000[75] | Joint Genome Institute | 2003[75] |
Ciona savignyi | Tunicate | 174 Mb | Broad Institute | 2007[76] | ||
Gallus gallus | Chicken | 1000 Mb | 20-23,000[77] | International Chicken Genome Sequencing Consortium | 2004[77] | |
Strongylocentrotus purpuratus | Sea urchin | Model eukaryote | 814 Mb | 23,300[78] | Sea Urchin Genome Sequencing Consortium | 2006[78] |
Takifugu rubripes | Puffer fish | Vertebrate with small genome | 390 Mb | 22-29,000[79] | International Fugu Genome Consortium[80] | 2002[81] |
Tetraodon nigroviridis | Puffer fish | Vertebrate with compact genome | 340 Mb[82] | 22,400[82] | Genoscope and the Broad Institute | 2004[82] |
Sequenced Bacterial Genomes
There are some techniques which are improving to be fast and high volume DNA sequencing like fluorescent dideoxynucleotide chain terminators, "shot gun" method etc. The bacterial genome of Haemophilus influenza wa determined in 1995 with a "short gun" method. The genomic DNA is cut randomly into fragments and then the computer programs brings out the whole sequence by matching the overlapping regions between these fragments. The H. influenzae genome consists of 1,830,137 base pairs and encodes approximately 1740 proteins. With these similar approaches, more than 100 bacterial and archaeal species including key model of organisms such as E.coli, Salmonella typhimurium, and Archaeoglobus fulgidus, as well as pathogenic organisms such as Yersina pestis (causing bubonic plague) and Bacillus anthracis (anthrax).1
References
1. Berg, Jeremy M. 2007. Biochemistry. Sixth Ed. New York: W.H. Freeman. 68-69, 78. 2. Voet, Voet, Pratt (2004). - Fundamentals of Biochemistry
- 1 2 Douglas S, Zauner S, Fraunholz M, et al. (April 2001). "The highly reduced genome of an enslaved algal nucleus". Nature 410 (6832): 1091–6. doi:10.1038/35074092. PMID 11323671.
- 1 2 Armbrust EV, Berges JA, Bowler C, et al. (October 2004). "The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism". Science (journal) 306 (5693): 79–86. doi:10.1126/science.1101156. PMID 15459382.
- ↑ Bowler C, Allen AE, Badger JH, et al. (November 2008). "The Phaeodactylum genome reveals the evolutionary history of diatom genomes". Nature 456: 239–244. doi:10.1038/nature07410. PMID 18923393. http://www.nature.com/nature/journal/v456/n7219/abs/nature07410.html.
- ↑ Brayton KA, Lau AOT, Herndon DR, et al. (2007). "Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa.". PLoS Pathogens 3 (10): e148. doi:10.1371/journal.ppat.0030148.
- 1 2 Xu P, Widmer G, Wang Y, et al. (October 2004). "The genome of Cryptosporidium hominis". Nature 431 (7012): 1107–12. doi:10.1038/nature02977. PMID 15510150.
- 1 2 Abrahamsen MS, Templeton TJ, Enomoto S, et al. (April 2004). "Complete genome sequence of the apicomplexan, Cryptosporidium parvum". Science (journal) 304 (5669): 441–5. doi:10.1126/science.1094786. PMID 15044751.
- 1 2 Aury JM, Jaillon O, Duret L, et al. (November 2006). "Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia". Nature 444 (7116): 171–8. doi:10.1038/nature05230. PMID 17086204.
- 1 2 Gardner MJ, Hall N, Fung E, et al. (October 2002). "Genome sequence of the human malaria parasite Plasmodium falciparum". Nature 419 (6906): 498–511. doi:10.1038/nature01097. PMID 12368864.
- 1 2 A. Pain, U. Böhme, A. E. Berry, K. Mungall, R. D. Finn, A. P. Jackson, T. Mourier, J. Mistry, E. M. Pasini, M. A. Aslet, S. Balasubrammaniam, K. Borgwardt, K. Brooks, C. Carret, T. J. Carver, I. Cherevach, T. Chillingworth, T. G. Clark, M. R. Galinski, N. Hall, D. Harper, D. Harris, H. Hauser, A. Ivens, C. S. Janssen, T. Keane, N. Larke, S. Lapp, M. Marti, S. Moule, I. M. Meyer, D. Ormond, N. Peters, M. Sanders, S. Sanders, T. J. Sargeant, M. Simmonds, F. Smith, R. Squares, S. Thurston, A. R. Tivey, D. Walker, B. White, E. Zuiderwijk, C. Churcher, M. A. Quail, A. F. Cowman, C. M. R. Turner, M. A. Rajandream, C. H. M. Kocken, A. W. Thomas, C. I. Newbold, B. G. Barrell & M. Berriman (9 October 2008). "The genome of the simian and human malaria parasite Plasmodium knowlesi". Nature 455: 799–803. doi:10.1038/nature07306.
- 1 2 JM Carlton, JH Adams, JC Silva, et al. (9 October 2008). "Comparative genomics of the neglected human malaria parasite Plasmodium vivax". Nature 455: 757–763. doi:10.1038/nature07327.
- 1 2 Carlton JM, Angiuoli SV, Suh BB, et al. (October 2002). "Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii". Nature 419 (6906): 512–9. doi:10.1038/nature01099. PMID 12368865.
- 1 2 Eisen JA, Coyne RS, Wu M, et al. (September 2006). "Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote". PLoS Biol. 4 (9): e286. doi:10.1371/journal.pbio.0040286. PMID 16933976.
- 1 2 Gardner MJ, Bishop R, Shah T, et al. (July 2005). "Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes". Science (journal) 309 (5731): 134–7. doi:10.1126/science.1110439. PMID 15994558.
- ↑ Pain A, Renauld H, Berriman M, et al. (July 2005). "Genome of the host-cell transforming parasite Theileria annulata compared with T. parva". Science (journal) 309 (5731): 131–3. doi:10.1126/science.1110418. PMID 15994557.
- 1 2 Ivens AC, Peacock CS, Worthey EA, et al. (July 2005). "The genome of the kinetoplastid parasite, Leishmania major". Science (journal) 309 (5733): 436–42. doi:10.1126/science.1112680. PMID 16020728.
- 1 2 HG Morrison, AG McArthur, FD Gillin, et al. (September 2007). "Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia". Science (journal) 317 (5846): 1921–26.
- 1 2 Carlton JM, Hirt RP, Silva JC, et al. (January 2007). "Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis". Science (journal) 315 (5809): 207–12. doi:10.1126/science.1132894. PMID 17218520.
- 1 2 Berriman M, Ghedin E, Hertz-Fowler C, et al. (July 2005). "The genome of the African trypanosome Trypanosoma brucei". Science (journal) 309 (5733): 416–22. doi:10.1126/science.1112642. PMID 16020726.
- 1 2 El-Sayed NM, Myler PJ, Bartholomeu DC, et al. (July 2005). "The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease". Science (journal) 309 (5733): 409–15. doi:10.1126/science.1112631. PMID 16020725.
- 1 2 Eichinger L, Pachebat JA, Glöckner G, et al. (May 2005). "The genome of the social amoeba Dictyostelium discoideum". Nature 435 (7038): 43–57. doi:10.1038/nature03481. PMID 15875012.
- 1 2 Loftus B, Anderson I, Davies R, et al. (February 2005). "The genome of the protist parasite Entamoeba histolytica". Nature 433 (7028): 865–8. doi:10.1038/nature03291. PMID 15729342.
- 1 2 The Arabidopsis Genome Initiative, (December 2000). "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature 408 (6814): 796–815. doi:10.1038/35048692. PMID 11130711.
- ↑ Arabidopsis Genome Initiative
- ↑ http://www.research-in-germany.de/coremedia/generator/dachportal/en/07__News_20and_20Events/VDITZ_20-_20News_26Events/Archiv/2009-10-25_2C_20Full_20oilseed_20rape_20genome_20deciphered,sourcePageId=34814.html
- 1 2 Goff SA, Ricke D, Lan TH, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)". Science (journal) 296 (5565): 92–100. doi:10.1126/science.1068275. PMID 11935018.
- 1 2 Yu J, Hu S, Wang J, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. indica)". Science (journal) 296 (5565): 79–92. doi:10.1126/science.1068037. PMID 11935017.
- ↑ Derelle E, Ferraz C, Rombauts S, et al. (August 2006). "Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features". Proc. Natl. Acad. Sci. U.S.A. 103 (31): 11647–52. doi:10.1073/pnas.0604795103. PMID 16868079.
- 1 2 Rensing SA, Lang D, Zimmer AD, et al. (January 2008). "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants". Science (journal) 319 (5859): 64–9. doi:10.1126/science.1150646. PMID 18079367.
- 1 2 Tuskan GA, Difazio S, Jansson S, et al. (September 2006). "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)". Science (journal) 313 (5793): 1596–604. doi:10.1126/science.1128691. PMID 16973872.
- 1 2 3 Jaillon O, Aury JM, Noel B, et al. (September 2007). "The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla". Nature 449 (7161): 463–7. doi:10.1038/nature06148. PMID 17721507.
- ↑ First Draft Of Corn Genome Completed
- 1 2 Matsuzaki M, Misumi O, Shin-I T, et al. (April 2004). "Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D". Nature 428 (6983): 653–7. doi:10.1038/nature02398. PMID 15071595.
- 1 2 Walker, Tara; Chris Collet and Saul Purton (16 Nov 2005). "ALGAL TRANSGENICS IN THE GENOMIC ERA". Journal of Phycology 41 (6): 1077 - 1093.
- 1 2 Merchant et al. (2007). "The Chlamydomonas genome reveals the evolution of key animal and plant functions". Science 318: 245–250. doi:10.1126/science.1143609. PMID 17932292.
- 1 2 Dietrich FS, Voegeli S, Brachat S, et al. (April 2004). "The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome". Science (journal) 304 (5668): 304–7. doi:10.1126/science.1095781. PMID 15001715.
- 1 2 Nierman WC, Pain A, Anderson MJ, et al. (December 2005). "Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus". Nature 438 (7071): 1151–6. doi:10.1038/nature04332. PMID 16372009.
- 1 2 3 4 Galagan JE, Calvo SE, Cuomo C, et al. (December 2005). "Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae". Nature 438 (7071): 1105–15. doi:10.1038/nature04341. PMID 16372000.
- 1 2 Pel HJ, de Winde JH, Archer DB, et al. (February 2007). "Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88". Nat. Biotechnol. 25 (2): 221–31. doi:10.1038/nbt1282. PMID 17259976.
- 1 2 Machida M, Asai K, Sano M, et al. (December 2005). "Genome sequencing and analysis of Aspergillus oryzae". Nature 438 (7071): 1157–61. doi:10.1038/nature04300. PMID 16372010.
- 1 2 3 4 5 6 7 8 Dujon B, Sherman D, Fischer G, et al. (July 2004). "Genome evolution in yeasts". Nature 430 (6995): 35–44. doi:10.1038/nature02579. PMID 15229592.
- ↑ About Génolevures
- 1 2 Loftus BJ, Fung E, Roncaglia P, et al. (February 2005). "The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans". Science (journal) 307 (5713): 1321–4. doi:10.1126/science.1103773. PMID 15653466.
- 1 2 Katinka MD, Duprat S, Cornillot E, et al. (November 2001). "Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi". Nature 414 (6862): 450–3. doi:10.1038/35106579. PMID 11719806.
- 1 2 Dean RA, Talbot NJ, Ebbole DJ, et al. (April 2005). "The genome sequence of the rice blast fungus Magnaporthe grisea". Nature 434 (7036): 980–6. doi:10.1038/nature03449. PMID 15846337.
- 1 2 Goffeau A, Barrell BG, Bussey H, et al. (October 1996). "Life with 6000 genes". Science (journal) 274 (5287): 546, 563–7. PMID 8849441. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=8849441.
- ↑ International Collaboration for the Yeast Genome Sequencing
- 1 2 Wood V, Gwilliam R, Rajandream MA, et al. (February 2002). "The genome sequence of Schizosaccharomyces pombe". Nature 415 (6874): 871–80. doi:10.1038/nature724. PMID 11859360.
- ↑ The Bovine Genome Sequencing and Analysis Consortium (2009-04-24). "The genome sequence of taurine cattle: a window to ruminant biology and evolution". Science 324 (5926): 522–528. doi:10.1126/science.1169588. http://www.sciencemag.org/cgi/content/abstract/324/5926/522. Retrieved 2009-04-24.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 PubMed Home
- ↑ http://news.bbc.co.uk/1/hi/sci/tech/8014598.stm Cow genome 'to transform farming'
- 1 2 3 Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature 438 (7069): 803–19. doi:10.1038/nature04338. PMID 16341006.
- 1 2 3 4 5 6 7 8 9 Mammalian Genome Project - Broad
- ↑ Horse Genome Assembled, February 7, 2007 News Release - National Institutes of Health (NIH)
- ↑ Pontius JU, Mullikin JC, Smith DR, et al. (November 2007). "Initial sequence and comparative analysis of the cat genome". Genome Res. 17 (11): 1675–89. doi:10.1101/gr.6380007. PMID 17975172.
- 1 2 Human Genome Sequencing Consortium, International (October 2004). "Finishing the euchromatic sequence of the human genome". Nature 431 (7011): 931–45. doi:10.1038/nature03001. PMID 15496913.
- ↑ McPherson JD, Marra M, Hillier L, et al. (February 2001). "A physical map of the human genome". Nature 409 (6822): 934–41. doi:10.1038/35057157. PMID 11237014.
- ↑ Venter JC, Adams MD, Myers EW, et al. (February 2001). "The sequence of the human genome". Science (journal) 291 (5507): 1304–51. doi:10.1126/science.1058040. PMID 11181995.
- ↑ Gregory SG, Barlow KF, McLay KE, et al. (May 2006). "The DNA sequence and biological annotation of human chromosome 1". Nature 441 (7091): 315–21. doi:10.1038/nature04727. PMID 16710414.
- ↑ Mikkelsen TS, Wakefield MJ, Aken B, et al. (May 2007). "Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences". Nature 447 (7141): 167–77. doi:10.1038/nature05805. PMID 17495919. http://www.nature.com/nature/journal/v447/n7141/full/nature05805.html.
- 1 2 Waterston RH, Lindblad-Toh K, Birney E, et al. (December 2002). "Initial sequencing and comparative analysis of the mouse genome". Nature 420 (6915): 520–62. doi:10.1038/nature01262. PMID 12466850.
- ↑ International Collaboration for the Mouse Genome Sequencing
- ↑ Whole Genome Shotgun sequencing project list
- ↑ Chimpanzee Sequencing and Analysis Consortium. (September 2005). "Initial sequence of the chimpanzee genome and comparison with the human genome". Nature 437 (7055): 69–87. doi:10.1038/nature04072. PMID 16136131.
- 1 2 Gibbs RA, Weinstock GM, Metzker ML, et al. (April 2004). "Genome sequence of the Brown Norway rat yields insights into mammalian evolution". Nature 428 (6982): 493–521. doi:10.1038/nature02426. PMID 15057822.
- 1 2 Holt RA, Subramanian GM, Halpern A, et al. (October 2002). "The genome sequence of the malaria mosquito Anopheles gambiae". Science (journal) 298 (5591): 129–49. doi:10.1126/science.1076181. PMID 12364791.H
- 1 2 Honeybee Genome Sequencing Consortium. (October 2006). "Insights into social insects from the genome of the honeybee Apis mellifera". Nature 443 (7114): 931–49. doi:10.1038/nature05260. PMID 17073008.
- ↑ Mita K, Kasahara M, Sasaki S, et al. (February 2004). "The genome sequence of silkworm, Bombyx mori". DNA Res. 11 (1): 27–35. doi:10.1093/dnares/11.1.27. PMID 15141943. http://dnaresearch.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=15141943.
- 1 2 Adams MD, Celniker SE, Holt RA, et al. (March 2000). "The genome sequence of Drosophila melanogaster". Science (journal) 287 (5461): 2185–95. PMID 10731132. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=10731132.
- 1 2 Stein LD, Bao Z, Blasiar D, et al. (November 2003). "The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics". PLoS Biol. 1 (2): E45. doi:10.1371/journal.pbio.0000045. PMID 14624247. PMC 261899. http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0000045.
- 1 2 C. elegans Sequencing Consortium. (December 1998). "Genome sequence of the nematode C. elegans: a platform for investigating biology". Science (journal) 282 (5396): 2012–8. PMID 9851916. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=9851916.
- 1 2 Charles Opperman, David McK. Bird, Mark Burke, Jonathan Cohn, John Cromer, Steve Diener, Jim Gajan, Steve Graham, T. D. Houfek, Jennifer Schaff, Reenah Schaffer, Elizabeth Scholl, Eric Windham, Bryon R. Sosinski, Valerie M. Williamson, Qingli Liu, Varghese P. Thomas, Dan S. Rokhsar, Therese Mitros (2008). "Sequence and Genetic Map of Meloidogyne hapla: A Compact Nematode Genome for Plant Parasitism". Proceedings of the National Academy of Sciences 105: 14802. doi:10.1073/pnas.0805946105. PMID 18809916.
- 1 2 Pierre Abad, Jerome Gouzy, Jean-Marc Aury, Philippe Castagnone-Sereno, Etienne G.J. Danchin, Emeline Deleury, Laetitia Perfus-Barbeoch et al. vol. 26, pp. 909-915. (August 2008). "Genome sequence of the metazoan plant-parasitic nematode : Meloidogyne incognita". Nature Biotechnology 26: 909–915. doi:10.1038/nbt.1482. PMID 18660804.
- ↑ International M.incognita Genome Consortium
- 1 2 Christoph Dieterich, Sandra W Clifton, Lisa N Schuster, Asif Chinwalla, Kimberly Delehaunty, Iris Dinkelacker, Lucinda Fulton, Robert Fulton, Jennifer Godfrey, Pat Minx, Makedonka Mitreva, Waltraud Roeseler, Huiyu Tian, Hanh Witte, Shiaw-Pyng Yang, Richard K Wilson & Ralf J Sommer (September 2008). "The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism". Nature Genetics 40: 1193. doi:10.1038/ng.227. PMID 17095691.
- 1 2 Dehal P, Satou Y, Campbell RK, et al. (December 2002). "The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins". Science (journal) 298 (5601): 2157–67. doi:10.1126/science.1080049. PMID 12481130. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=12481130.
- ↑ Small KS, Brudno M, Hill MM, Sidow A (2007). "A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome". Genome Biol. 8 (3): R41. doi:10.1186/gb-2007-8-3-r41. PMID 17374142. PMC 1868934. http://genomebiology.com/1465-6906/8/R41.
- 1 2 International Chicken Genome Sequencing Consortium. (December 2004). "Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution". Nature 432 (7018): 695–716. doi:10.1038/nature03154. PMID 15592404.
- 1 2 Sodergren E, Weinstock GM, Davidson EH, et al. (November 2006). "The genome of the sea urchin Strongylocentrotus purpuratus". Science (journal) 314 (5801): 941–52. doi:10.1126/science.1133609. PMID 17095691. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=17095691.
- ↑ International Fugu Genome Consortium. Forth Genome Assembly
- ↑ International Fugu Genome Consortium
- ↑ Aparicio S, Chapman J, Stupka E, et al. (August 2002). "Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes". Science (journal) 297 (5585): 1301–10. doi:10.1126/science.1072104. PMID 12142439. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=12142439.
- 1 2 3 Jaillon O, Aury JM, Brunet F, et al. (October 2004). "Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype". Nature 431 (7011): 946–57. doi:10.1038/nature03025. PMID 15496914.