< Microtechnology

Semiconductors

Bandgap vs Lattice Const
Bandgap vs Lattice Const for Semiconductors - Wide range
Bandgap vs Lattice Const for 5.25-6.74 Å


Physical Semiconductor Properties Overview Table

Semiconductor Electronic Properties Overview Table
Element or CompoundNameCrystal StructureSymmetry GroupLattice Constant (A) at 300 KBand Gap (ev) at 300 KBandNumber of 1022 atoms cm-3Density / g cm-3
IV
CCarbon (diamond)D?3.566835.47I??
CGraphite???semimetal???
CNanotube???prop. to 1/Ø[nm]???
GeGermaniumDOh7- Fd3m5.646130.66I4.45.3234
SiSiliconDOh7-Fd3m5.430951.12I52.329
SnTin???metal???
SnGrey TinD?6.48920D??
IV-IV
SiCSilicon carbideW?a = 3.086 and c= 15.1172.996I??
III-V
AlAsAluminum arsenideZTd2-F43m[1]5.66052.16I?3.717[1]
AlPAluminum phosphideZTd2-F43m[1]5.4512.45I[1]??
AlSbAluminum antimonideZTd2-F43m[1]6.13551.58I?4.29[1]
BNBoron nitrideZ?3.615~7.5I??
BPBoron phosphideZ?4.5382???
GaAsGallium arsenideZTd2-F43m[1]5.653251.42D4.425.32
GaNGallium nitrideW?a = 3.189 and c = 5.1853.36???
GaPGallium phosphideZTd2-F43m[1]5.45122.26I4.944.14
GaSbGallium antimonideZTd2-F43m[1]6.095930.72D3.535.61
InAsIndium arsenideZTd2-F43m[1]6.05840.36D3.595.68
InPIndium phosphideZTd2-F43m[1]5.86861.35D3.964.81
InSbIndium antimonideZTd2-F43m[1]6.47940.17D2.945.77
AlxGa1-xAs??Td2-F43m5.6533+0.0078x??(4.42-0.17x)5.32-1.56x
GaAsSbx??Td2-F43m???(4.42-0.89x)(5.32 + 0.29x)
II-VI
CdSCadmium sulfideZ?5.8322.42D??
CdSCadmium sulfideW?a = 4.16 and c = 6.7562.42D??
CdSeCadmium selenideZ?6.051.7D??
CdTeCadmium tellurideZ?6.4821.56D??
ZnOZinc oxideR?4.583.35D??
ZnSZinc sulfideZ?5.423.68D??
ZnSZinc sulfideW?a = 3.82 and c = 6.263.68D??
ZnSeZinc selenideZ?5.6682.71D??
ZnTeZinc tellurideZ?6.1032.393D??
IV-VI
PbSLead sulfideR?5.93620.41I??
PbSeLead selenideR?6.1260.27I??
PbTeLead tellurideR?6.4620.31D??
  • D = Diamond
  • W = Wurzite
  • Z = Zincblende
  • R = Rock Salt
  • I = Indirect
  • D = Direct
  • At ~ 2K

Some data from [2]

Electronic Semiconductor Properties Overview Table

Semiconductor Electronic Properties Overview Table
Element or CompoundNameDebye temperature /KDielectric constant (static)Dielectric constant high frequency (static)Electron affinity / eVOptical phonon energy / eVEffective electron mass me/moEffective electron mass ml/moEffective hole masses mh/moEffective hole masses mlp/moEffective hole masses mlEffective electron mass mt/moConductivity effective mass mccDensity-of-states electron mass mcdAuger recombination coefficient CnAuger recombination coefficient Cpde Broglie electron wavelengthAuger recombination coefficient
IV
CCarbon (diamond)?????????????????
CGraphite?????????????????
CNanotube?????????????????
GeGermanium37416.2?40.0370.081.60.330.043????10-30 cm6/s???
SiSilicon64011.7?4.050.0630.190.980.490.16????1.1·10-30 cm6 s-13·10-31cm6 s-1??
SnTin?????????????????
SnGrey Tin?????????????????
IV-IV
SiCSilicon carbide?????????????????
III-V
AlAsAluminum arsenide?????????????????
AlPAluminum phosphide?9.8[3]7.5[4]???3.67[5]0.513[6]0.211[6]?0.212[5]??????
AlSbAluminum antimonide?????????????????
BNBoron nitride?????????????????
BPBoron phosphide?????????????????
GaAsGallium arsenide36012.910.894.070.0350.063?0.510.082??????240?
GaNGallium nitride?????????????????
GaPGallium phosphide44511.19.113.80.051?1.120.790.14?0.22?????10-30 cm6/s
GaSbGallium antimonide26615.714.44.060.02970.041?0.40.05????????
InAsIndium arsenide28015.1512.34.90.030.023?0.410.026??????400?
InPIndium phosphide42512.59.614.380.0430.08?0.60.089????????
InSbIndium antimonide16016.815.74.590.0250.014?0.430.015????????
AlxGa1-xAs?370 + 54x + 22x^212.90 - 2.84x10.89 - 2.73x4.07 - 1.1x (x<0.45) and 3.64 - 0.14x (x>0.45)36.25 + 1.83x + 17.12x^2 - 5.11x^3 meV0.063 + 0.083x (x<0.45)?0.51 + 0.25x0.082 + 0.068x??0.26 (x>0.45)0.85 - 0.14x (x>0.45)????
GaAsSbx??12.90 + 2.8x10.89 + 3.51x4.07?0.063 - 0.0495x + 0.0258x^2?0.51 - 0.11x?0.082 - 0.032x???????
II-VI
CdSCadmium sulfide?????????????????
CdSeCadmium selenide?????????????????
CdTeCadmium telluride?????????????????
ZnOZinc oxide?????????????????
ZnSZinc sulfide?????????????????
ZnSeZinc selenide?????????????????
ZnTeZinc telluride?????????????????
IV-VI
PbSLead sulfide?????3.5[7]???????????
PbSeLead selenide?????????????????
PbTeLead telluride?????????????????
  • D = Diamond
  • W = Wurzite
  • Z = Zincblende
  • R = Rock Salt
  • I = Indirect
  • D = Direct
  • At ~ 2K

Some data from [8]

Silicon

The traditional material for microfabrication is silicon and a wealth of processes have been developed to work with silicon wafers.

There are several different silicon crystal orientations as well as polycrystalline silicon (often called polysilicon) to choose between, and these orientations all have their own material parameters.

The Young’s modulus, Poisson’s ratio, and shear modulus are transversely and vertically isotropic for Si111 whereas these vary significantly for Si100 and Si110 [9] [10].

Youngs modulus for polysilicon has values within that of crystalline silicon [11], which indicates that it is not affected by the grain boundaries, but is highly dependent on crystal orientation as well as the intrinsic stress [12].

Bulk shear modulus (which governs torsional motion) varies minimally on silicon (111), with respect to crystallographic directions, as compared to silicon (100) and (110)[13].

It should be kept in mind that the values of Young’s modulus for microstructures are very much dependent on the size of the structure [14]

Silicon is a nonlinear material, where the material parameters such as thermal coefficient of expansion, conductivity, and piezoresistivity all depend on the temperature. Care must be taken when modelling the behaviour devices with a wide temperature variation.

Silicon Material Properties Overview Table

  • Extensive properties listing on with "Resistivity & Mobility Calculator for Silicon Substrates"
Silicon Crystal Direction and Dopant Material Properties Overview Table - with gold for comparison to a metal
OrientationReferencesDopantYoung's Modulus[GPa]Poisson's ratioShear modulus [GPa]Thermal expansion [10-6]El. Resistivity [nΩ·m]Therm. Cond.[W·m−1·K−1]Piezores gauge factorNotes
Si 100 [13] ? 130.2-187.5 0.064-0.361 50.92-79.4 Therm exp El cond Therm cond PZgauge
Silicon 110 [13]

[15]

? 130.2-187.5 0.064-0.361 50.92-79.4 2.5-4.5 El cond Therm cond -52.7 to 121.3
Silicon 111 [13]

[15]

? 168.9 0.262 (parallel to the 111 plane)

0.182 (perpendicular to the 111 plane)

66.9 GPa (parallel to the 111 plane)

47.8 GPa (perpendicular to the 111 plane)

2.5-4.5 El cond Therm cond -14.1 to 175.8
Polysilicon [16]

[15]

? 130-169 Around 0.066-0.22 52-80 2.9 El cond Therm cond -10 to 30
Gold [17] none 78 0.44 27 14.2 22.14 318 4.48

This table indicates that Si 111 is an attractive material compared to other Si crystal orientations when only considering the mechanical properties, because it is providing a rigid structure by the high Young’s modulus, low Poisson’s ratio, high shear modulus and also the simplest because it is transversely and vertically isotropic.

Polycrystalline Silicon

IV Semiconductors

Of the IV group elements C,Si,Ge,Sn,Pb; Si and Ge are considered semiconductors although graphite,a allotropic form of carbon is conducting but its conductivity is too high than the standard semiconductors.So,it is like the metal.

III-V Semiconductors

III-V Semiconductor Mechanical Properties
III-VBulk Modulus GPaYoungs Mod. GPaShear Modulus GPaDensity g/cm³Ref
GaAs 75.3 Yo[100]= 85.9 C'= 32.85 5.317
GaN 210 (W) 204 (Z) 181 67 6.15
GaP 88 Yo[100]= 103 C' = 39.2 4.138
InAs 58 Yo[100]= 51.4 C'= 19.0 5.68
InP 71 Yo[100]= 61.1 C'= 22.5 4.81

Units

  • 1 N = 10^5 dyn
  • 1 GPa= 10^9 N /m2= 10^9+5dyn/m2= 10^9+5-4 dyn cm-2=10^10 dyn/cm2
  • 1 g/cm3 = 1 kg/L = 1000 kg/m3

II-VI Semiconductors

References

See also notes on editing this book about how to add references Microtechnology/About#How to Contribute.

  1. 1 2 3 4 5 6 7 8 9 10 11 12 http://www.semiconductors.co.uk/propiiiv5653.htm
  2. http://www.ioffe.ru/SVA/NSM/Semicond/index.html
  3. http://www.semiconductors.co.uk/propiiiv5653.htm
  4. S. Z. Beer, J. F. Jackovitz, D.W. Feldman and J.H. Parker Jr., "Raman and infrared active modes of aluminium phosphide", Physics Letters A Volume 26, Issue 7, Pages 331-332 (1968); doi:10.1016/0375-9601(68)90680-4
  5. 1 2 I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys", J. Appl. Phys. 89, 5815 (2001); doi:10.1063/1.1368156
  6. 1 2 Ming-Zhu Huang, and W.Y. Chinga, "A minimal basis semi-ab initio approach to the band structures of semiconductors", J. Phys. Chem. Solids 46 (1985) 977, DOI:10.1016/0022-3697(85)90101-5
  7. Artamonov, O. M.; Dmitrieva, O. G.; Samarin, S. N.; Yakovlev, I. I., Investigation of unoccupied electron states and determination of the electron affinity of PbS (100) by inverse photoemission spectroscopy, Semiconductors, Volume 27, Issue 10, October 1993, pp.955-957
  8. http://www.ioffe.ru/SVA/NSM/Semicond/index.html
  9. J. J. Wortman and R. A. Evans, “Young’s modulus, shear modulus, and Poissons ratio in silicon and germanium”, J. Appl. Phys., Vol. 36, 153-156 (1965).
  10. W. A. Brantley, “Calculated eleastic constants for stress problems associated with semiconductor devices”, J. Appl. Phys., vol. 44, 534-535 (1973).
  11. D. Maier-Schneider, J. Mansour, E. Oberheimer, D. Schneider, „Variation in Young’s Modulus and intrinsic stress of LPCVD-polysilicon due tohigh temperature annealing“, J. Micromech. Microeng. 3, 121-124 (1995).
  12. P. J. French, “Polysilicon: a versatile material for microsystems”, Sensors and Actuators A 99 (2002), 3-12
  13. 1 2 3 4 J. Kim, D. Cho and R. S. Muller, “Why is (111) silicon a better mechanical material for MEMS?”, TRANSDUCERS '01. EUROSENSORS XV, vol.1, 662-665 (2001).
  14. W. N. Sharpe, K. M. Jackson, K. J. Hemker, and Z. Xie, “Effect of Specimen Size in Young’s Modulus and Fracture Strength of Polysilicon”, J. Microeletromechanical Systems, vol. 10, no. 2, 317-326 (2001).
  15. 1 2 3 V. M. Glazov and A. S. Pshinkin, ”The Thermophysical Properties (Heat Capacity and Thermal Expansion) of Single Crystal Silicon”, Springer New York, 2001. ISBN 0018-151X.
  16. C. S. Pan and W. Hsu, “An electro-thermally and laterally driven polysilicon microactuator”, J. Micromech. Microeng., vol 7, 7-13 (1997)
  17. Wikipedia: gold
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.