Well-pointed category

In category theory, a category with a terminal object is well-pointed if for every pair of arrows such that , there is an arrow such that . (The arrows are called the global elements or points of the category; a well-pointed category is thus one that has "enough points" to distinguish non-equal arrows.)

See also

References

  • Pitts, Andrew M. (2013). Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer Science. Vol. 57. Cambridge University Press. p. 16. ISBN 1107017785.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.