Solynta

Solynta is a Dutch biotechnology company that specializes in hybrid potato breeding. It is headquartered in Wageningen, Gelderland, the Netherlands.

Solynta
TypePrivate
IndustryBiotechnology
Founded2006
FounderHein Kruyt, Pim Lindhout, Theo Schotte, and Johan Trouw
Headquarters,
Websitewww.solynta.com

Overview

Solynta was founded by Hein Kruyt,[1] Pim Lindhout, Theo Schotte and Johan Trouw[2] in 2006.[3] Solynta has been focusing on developing potato hybrids through breeding.

Technology

Hybrid breeding allows a breeder to combine in an easy way favorable traits from one parental line A with other desired traits from parental line B in its F1 offspring. This requires potato plants which are self-compatible and diploid, that can be used to generate the parental lines. To this end, Solynta crossed in 2008 a diploid potato with Solanum chacoense to start hybrid breeding.[4]

The first step is to develop parental lines that are homozygous. Although potato is very heterozygous,[4] it is possible to generate homozygous potato lines.[5][6][7]

Self-compatible diploid potato was found by Hosaka and Hanneman in the Solanum chacoense used by Solynta.[8] The first results of the breeding efforts were published in 2011 by Lindhout et al.,[9] a few years later this potential of hybrid breeding in potato was acknowledged by the US scientific community.[10] Further tails of the breeding process, including the original donors have been described in Lindhout et al., 2018.[11] The mechanisms of self-compatibility in potato have recently been unraveled simultaneously by Eggers et al.[12] and Ma et al., identifying the Sli-gene.[13]

Meijer et al. (2018)[14] and Prinzenberg et al. (2018)[15] showed that using the potato breeding material of Solynta, fast and targeted progress on breeding for specific traits could be achieved. In 2017, Solynta showed in a program called HiSPoB[16] that is was able to introduce a double stack phytophthora resistance in their hybrid material, which was publicly demonstrated (Su et al. 2020).[17] With this demonstration the principle of marker-assisted breeding, known and applied in other major crops, was demonstrated for the first time for potato. Solynta's potato breeding techniques include F1 hybrid potato breeding.[18][5]

Research collaborations

Solynta has participated in a number of scientific collaborations and networks, in order to gain experience with the technology and to allow public researchers to work with genetic material made available by Solynta.

  • SolAce: methods for improving agroecosystem and crop efficiency for water and nutrient use[19]
  • Protecta: pathogen-informed resistance to oomycete diseases in ecosystems, agriculture and aquaculture[20]
  • Sky High: vertical farming program[21]
  • Responsible Innovation in Dutch Potato Breeding (NWO Responsible Innovation)[22]
  • Holland Innovative Potato (HIP)[23]

For public research purposes, the diploid self-compatible line "Solyntus" was released to the scientific community in collaboration with Wageningen UR – Plant Breeding.[24] Genetic material from Solynta was used by groups in the UK[25] and Sweden[26] to perform research on fundamental aspects of potato biology. The collaborations have led to an acknowledgment by the public scientific community for the openness and transparency of Solynta.[27]

The Sli gene was recently cloned by Wageningen University and Solynta in 2021, which will allow for faster and more focused breeding.[28][29] It primarily focuses on Hybrid True Potato Seeds (HTPS) that are not genetically modified.[30][1] Using potato seeds, 25 grams of seeds can be utilized in place of 2500 kg of tubers as used in traditional potato planting.[31] This method of potato breeding received a U.S. patent in 2020.[32]

Solynta has worked on developing on a late blight-resistant potato variety[33] using cross-breeding.[34] Scientists at the company have also worked on published genome sequences of potatoes.[35]

Impact and further research

Two patents have been granted on hybrid breeding technology, one in the US in 2020.[36] Solynta signed a collaboration with the largest potato starch processor, AVEBE in 2021. Their joint goal is to develop hybrid potato varieties with added value for processing starch and other ingredients, while maintaining a sustainable crop production.[37]

First variety registrations were obtained in Zimbabwe (2021) and Kenya (2023). A collaboration agreement with seed-treatment specialist Incotec was signed in 2022.

The case of hybrid potato breeding has led to a number of studies, initiated by Rathenau Institute (Beumer & Edelenbosch, 2019; Edelenbosch & Munnichs, 2020).[38][39]

Solynta's model of using and regulating ownership of newly developed technologies is discussed in Beumer et al.'s framework of Commons.[40] The framework states there is a diversity of genetic material available and accessible and supports a scientific basis for further development of the potato value chain.[41]

Potato hybrid breeding trials have been carried out in the DR Congo (in Ituri Province),[42] Rwanda,[43] and Mozambique (in Angónia District, Tete Province).[44] An early hybrid potato growing trial using diploid hybrids in East Africa showed promising yield and disease resistance.[45]

References

  1. "Solynta raises €21M to "unlock the true potential" of the humble potato; here's how". Silicon Canals. August 6, 2021.
  2. Hopkins, Matt (May 16, 2022). "Solynta, Incotec Form Partnership to Optimize Performance of Hybrid True Potato Seeds".
  3. Stokstad, Erik (February 8, 2019). "The new potato". Science. 363 (6427): 574–577. Bibcode:2019Sci...363..574S. doi:10.1126/science.363.6427.574. PMID 30733400. S2CID 73425570.
  4. Zhou, Qian; Tang, Dié; Huang, Wu; Yang, Zhongmin; Zhang, Yu; Hamilton, John P.; Visser, Richard G. F.; Bachem, Christian W. B.; Robin Buell, C.; Zhang, Zhonghua; Zhang, Chunzhi; Huang, Sanwen (October 2020). "Haplotype-resolved genome analyses of a heterozygous diploid potato". Nature Genetics. 52 (10): 1018–1023. doi:10.1038/s41588-020-0699-x. PMC 7527274. PMID 32989320. S2CID 222167173.
  5. Lindhout, Pim; Meijer, Dennis; Schotte, Theo; Hutten, Ronald C. B.; Visser, Richard G. F.; van Eck, Herman J. (December 2011). "Towards F1 Hybrid Seed Potato Breeding". Potato Research. 54 (4): 301–312. doi:10.1007/s11540-011-9196-z. S2CID 39719359.
  6. Leisner, Courtney P.; Hamilton, John P.; Crisovan, Emily; Manrique‐Carpintero, Norma C.; Marand, Alexandre P.; Newton, Linsey; Pham, Gina M.; Jiang, Jiming; Douches, David S.; Jansky, Shelley H.; Buell, C. Robin (May 2018). "Genome sequence of M6, a diploid inbred clone of the high‐glycoalkaloid‐producing tuber‐bearing potato species Solanum chacoense, reveals residual heterozygosity". The Plant Journal. 94 (3): 562–570. doi:10.1111/tpj.13857. PMID 29405524. S2CID 4924888.
  7. van Lieshout, Natascha; van der Burgt, Ate; de Vries, Michiel E.; ter Maat, Menno; Eickholt, David; Esselink, Danny; van Kaauwen, Martijn P. W.; Kodde, Linda P.; Visser, Richard G. F.; Lindhout, Pim; Finkers, Richard (October 2020). "Solyntus, the New Highly Contiguous Reference Genome for Potato ( Solanum tuberosum )". G3: Genes, Genomes, Genetics. 10 (10): 3489–3495. doi:10.1534/g3.120.401550. PMC 7534448. PMID 32759330. S2CID 221038196.
  8. Hosaka, Kazuyoshi; E. Hanneman, Jr., Robert (1998). "Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers". Euphytica. 103 (2): 265–271. doi:10.1023/A:1018380725160. S2CID 29400272.
  9. Lindhout, Pim; Meijer, Dennis; Schotte, Theo; Hutten, Ronald C. B.; Visser, Richard G. F.; van Eck, Herman J. (December 2011). "Towards F1 Hybrid Seed Potato Breeding". Potato Research. 54 (4): 301–312. doi:10.1007/s11540-011-9196-z. S2CID 39719359.
  10. Jansky, Shelley H.; Charkowski, Amy O.; Douches, David S.; Gusmini, Gabe; Richael, Craig; Bethke, Paul C.; Spooner, David M.; Novy, Richard G.; De Jong, Hielke; De Jong, Walter S.; Bamberg, John B.; Thompson, A. L.; Bizimungu, Benoit; Holm, David G.; Brown, Chuck R.; Haynes, Kathleen G.; Sathuvalli, Vidyasagar R.; Veilleux, Richard E.; Miller, J. Creighton; Bradeen, Jim M.; Jiang, Jiming (July 2016). "Reinventing Potato as a Diploid Inbred Line-Based Crop". Crop Science. 56 (4): 1412–1422. doi:10.2135/cropsci2015.12.0740. hdl:10919/97862.
  11. Lindhout, Pim; De Vries, Michiel; Ter Maat, Menno; Ying, Su; Viquez-Zamora, Marcela; Van Heusden, Sjaak (2018). "Hybrid potato breeding for improved varieties". Achieving sustainable cultivation of potatoes Volume 1. Burleigh Dodds Series in Agricultural Science. pp. 99–122. doi:10.19103/as.2016.0016.04. ISBN 978-1-78676-100-2. S2CID 188905534.
  12. Eggers, Ernst-Jan; van der Burgt, Ate; van Heusden, Sjaak A. W.; de Vries, Michiel E.; Visser, Richard G. F.; Bachem, Christian W. B.; Lindhout, Pim (6 July 2021). "Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato". Nature Communications. 12 (1): 4141. Bibcode:2021NatCo..12.4141E. doi:10.1038/s41467-021-24267-6. PMC 8260583. PMID 34230471.
  13. Ma, Ling; Zhang, Chunzhi; Zhang, Bo; Tang, Fei; Li, Futing; Liao, Qinggang; Tang, Die; Peng, Zhen; Jia, Yuxin; Gao, Meng; Guo, Han; Zhang, Jinzhe; Luo, Xuming; Yang, Huiqin; Gao, Dongli; Lucas, William J.; Li, Canhui; Huang, Sanwen; Shang, Yi (6 July 2021). "A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes". Nature Communications. 12 (1): 4142. Bibcode:2021NatCo..12.4142M. doi:10.1038/s41467-021-24266-7. PMC 8260799. PMID 34230469.
  14. Meijer, D.; Viquez-Zamora, M.; van Eck, H. J.; Hutten, R. C. B.; Su, Y.; Rothengatter, R.; Visser, R. G. F.; Lindhout, W. H.; van Heusden, A. W. (July 2018). "QTL mapping in diploid potato by using selfed progenies of the cross S. tuberosum × S. chacoense". Euphytica. 214 (7): 121. doi:10.1007/s10681-018-2191-6. PMC 6434985. PMID 30996395.
  15. Prinzenberg, Aina E.; Víquez-Zamora, Marcela; Harbinson, Jeremy; Lindhout, Pim; van Heusden, Sjaak (October 2018). "Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato". Physiologia Plantarum. 164 (2): 163–175. doi:10.1111/ppl.12689. PMID 29314007.
  16. "H2020 – SME instrument". H2020 – SME instrument.
  17. Su, Ying; Viquez-Zamora, Marcela; den Uil, Danielle; Sinnige, Jarno; Kruyt, Hein; Vossen, Jack; Lindhout, Pim; van Heusden, Sjaak (February 2020). "Introgression of Genes for Resistance against Phytophthora infestans in Diploid Potato". American Journal of Potato Research. 97 (1): 33–42. doi:10.1007/s12230-019-09741-8. S2CID 208650047.
  18. "Solynta | PotatoPro". www.potatopro.com. October 16, 2013.
  19. "SolACE". www.solace-eu.net.
  20. "CORDIS | European Commission".
  21. "SKY HIGH: Vertical farming, a revolution in plant production | NWO". www.nwo.nl. 28 October 2019.
  22. "Responsible innovation in Dutch potato breeding | NWO". www.nwo.nl. September 2015.
  23. "Holland Innovative Potato – Dé kraamkamer van vernieuwing in de aardappelketen".
  24. "Solyntus genome sequence consortium". www.plantbreeding.wur.nl.
  25. Witek, Kamil; Jupe, Florian; Witek, Agnieszka I; Baker, David; Clark, Matthew D; Jones, Jonathan D G (June 2016). "Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing" (PDF). Nature Biotechnology. 34 (6): 656–660. doi:10.1038/nbt.3540. PMID 27111721. S2CID 21764939.
  26. Wang, Eu Sheng; Kieu, Nam Phuong; Lenman, Marit; Andreasson, Erik (June 6, 2020). "Tissue Culture and Refreshment Techniques for Improvement of Transformation in Local Tetraploid and Diploid Potato with Late Blight Resistance as an Example". Plants. 9 (6): 695. doi:10.3390/plants9060695. PMC 7356882. PMID 32486039.
  27. Bradshaw, John E. (January 6, 2022). "Breeding Diploid F1 Hybrid Potatoes for Propagation from Botanical Seed (TPS): Comparisons with Theory and Other Crops". Plants. 11 (9): 1121. doi:10.3390/plants11091121. PMC 9101707. PMID 35567122.
  28. Eggers, Ernst-Jan; van der Burgt, Ate; van Heusden, Sjaak A. W.; de Vries, Michiel E.; Visser, Richard G. F.; Bachem, Christian W. B.; Lindhout, Pim (July 6, 2021). "Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato". Nature Communications. 12 (1): 4141. Bibcode:2021NatCo..12.4141E. doi:10.1038/s41467-021-24267-6. PMC 8260583. PMID 34230471.
  29. Ma, Ling; Zhang, Chunzhi; Zhang, Bo; Tang, Fei; Li, Futing; Liao, Qinggang; Tang, Die; Peng, Zhen; Jia, Yuxin; Gao, Meng; Guo, Han; Zhang, Jinzhe; Luo, Xuming; Yang, Huiqin; Gao, Dongli; Lucas, William J.; Li, Canhui; Huang, Sanwen; Shang, Yi (July 6, 2021). "A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes". Nature Communications. 12 (1): 4142. Bibcode:2021NatCo..12.4142M. doi:10.1038/s41467-021-24266-7. PMC 8260799. PMID 34230469.
  30. "First large-scale Solynta Hybrid seed potato trials highly successful | PotatoPro". www.potatopro.com. April 17, 2017.
  31. "Solynta". www.innovationindustries.com.
  32. Staff, Compiled by (January 13, 2020). "Solynta Granted U.S. Patent for Hybrid True Potato Seed Development". Seed World.
  33. "Solynta develops a blight resistant potato variety (non-GMO) | PotatoPro". www.potatopro.com. August 22, 2017.
  34. "Solynta's revolutionary hybrid breeding technology protects potato from late blight by multi-resistance | PotatoPro". www.potatopro.com. August 23, 2017.
  35. "Complex potato genome further unveiled – Solynta". June 2019.
  36. "Hybrid seed potato breeding".
  37. "Royal Avebe and Solynta join forces: hybrid breeding in starch potato production". Avebe. April 15, 2021.
  38. Beumer, Koen; Edelenbosch, Rosanne (May 2019). "Hybrid potato breeding: A framework for mapping contested socio-technical futures". Futures. 109: 227–239. doi:10.1016/j.futures.2019.01.004. hdl:1874/384722. S2CID 150069773.
  39. Edelenbosch, R. & G. Munnichs (2020). De aardappel heeft de toekomst – Drie scenario's over de hybride aardappel en de wereldvoedselvoorziening. Den Haag: Rathenau Instituut.
  40. Beumer, Koen; Stemerding, Dirk; Swart, Jac. A. A. (June 2021). "Innovation and the commons: lessons from the governance of genetic resources in potato breeding". Agriculture and Human Values. 38 (2): 525–539. doi:10.1007/s10460-020-10169-8. S2CID 225113969.
  41. Beumer, Koen; Stemerding, Dirk (23 November 2021). "A breeding consortium to realize the potential of hybrid diploid potato for food security". Nature Plants. 7 (12): 1530–1532. doi:10.1038/s41477-021-01035-4. hdl:1874/416028. PMID 34815537. S2CID 244529204.
  42. "Potatoes grown from seeds yield big harvests". Appropriate Technology. Vol. 44, no. 2. June 2017. p. 11–12. ProQuest 2007481934.
  43. "The New Times: Rwanda pilots 'revolutionary' potato seeds – Solynta". 3 January 2020.
  44. "first successful Hybrid true potato seed (HTPS) trial of solynta and solidaridad in mozambique shows great potential – Solynta". 22 April 2020.
  45. de Vries, Michiel; ter Maat, Menno; Lindhout, Pim (2016). "The potential of hybrid potato for East-Africa". Open Agriculture. 1 (1): 151–156. doi:10.1515/opag-2016-0020. S2CID 4567960.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.