Pollock's conjectures

Pollock's conjectures are two closely related unproven[1] conjectures in additive number theory. They were first stated in 1850 by Sir Frederick Pollock,[2][3] better known as a lawyer and politician, but also a contributor of papers on mathematics to the Royal Society. These conjectures are a partial extension of the Fermat polygonal number theorem to three-dimensional figurate numbers, also called polyhedral numbers.

The numbers that are not the sum of at most 4 tetrahedral numbers are given by the sequence 17, 27, 33, 52, 73, ..., (sequence A000797 in the OEIS) of 241 terms, with 343867 being almost certainly the last such number.[4]

References

  1. Deza, Elena; Deza, Michael (2012). Figurate Numbers. World Scientific. ISBN 9789814355483.
  2. Frederick Pollock (1850). "On the extension of the principle of Fermat's theorem on the polygonal numbers to the higher order of series whose ultimate differences are constant. With a new theorem proposed, applicable to all the orders". Abstracts of the Papers Communicated to the Royal Society of London. 5: 922–924. JSTOR 111069.
  3. Dickson, L. E. (June 7, 2005). History of the Theory of Numbers, Vol. II: Diophantine Analysis. Dover. pp. 22–23. ISBN 0-486-44233-0.
  4. Weisstein, Eric W. "Pollock's Conjecture". MathWorld.
  5. Elessar Brady, Zarathustra (2016). "Sums of seven octahedral numbers". Journal of the London Mathematical Society. Second Series. 93 (1): 244–272. arXiv:1509.04316. doi:10.1112/jlms/jdv061. MR 3455791. S2CID 206364502.
  6. Kim, Hyun Kwang (2002-06-12). "On regular polytope numbers". Proceedings of the American Mathematical Society. American Mathematical Society (AMS). 131 (1): 65–75. doi:10.1090/s0002-9939-02-06710-2. ISSN 0002-9939.
  7. Wieferich, Arthur (1909). "Beweis des Satzes, daß sich eine jede ganze Zahl als Summe von höchstens neun positiven Kuben darstellen läßt". Mathematische Annalen (in German). 66 (1): 95–101. doi:10.1007/BF01450913. S2CID 121386035.
  8. Kempner, Aubrey (1912). "Bemerkungen zum Waringschen Problem". Mathematische Annalen (in German). 72 (3): 387–399. doi:10.1007/BF01456723. S2CID 120101223.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.