Phosphanide

Phosphanides are chemicals containing the [PH2] anion. This is also known as the phosphino anion or phosphido ligand. The IUPAC name can also be dihydridophosphate(1−).[1]

Phosphanide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
284
  • InChI=1S/H2P/h1H2/q-1
    Key: JZWFHNVJSWEXLH-UHFFFAOYSA-N
  • [H][P-][H]
Properties
H2P
Molar mass 32.990 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

It can occur as a group phosphanyl -PH2 in organic compounds or ligand called phosphanido, or dihydridophosphato(1−). A related substance has PH2−. Phosphinidene (PH) has phosphorus in a −1 oxidation state.[2]

As a ligand PH2 can either bond to one atom or be in a μ2-bridged ligand across two metal atoms.[3] With transition metals and actinides, bridging is likely unless the metal atom is mostly enclosed in a ligand.

In phosphanides, phosphorus is in the −3 oxidation state. When phosphanide is oxidised, the first step is phosphinite ([H2PO]). Further oxidation yields phosphonite ([HPO2]2−)and phosphite ([PO3]3−).[4]

The study of phosphine derivatives is unpopular, because they are unstable, poisonous and malodorous.[5]

Formation

Alkali metal phosphanides can be made from phosphine and the metal dissolved in liquid ammonia. Sodium phosphanide can also be made from phosphine and triphenylmethyl sodium. Lithium phospahnide can be made from phosphine and butyl lithium or phenyl lithium.[3]

Another way to produce -PH2 complexes is by hydrolysis of a -P(SiMe3)2 compound with an alcohol, such as methanol.[3]

Yet another way is to remove a hydrogen atom from the phosphine in a phosphine complex by using a strong base.[3]

Properties

When calcium phosphanide is heated, it decomposes by releasing phosphine and yielding the phosphanediide: CaPH. With further heating a binary calcium phosphide is formed.[4] Other compounds may also lose hydrogen as well as phosphine.[6]


Phosphanides can react with CCl4 to substitute Cl for H giving a -PCl2 compound. Similarly CBr4 can produce -PBr2. Also AgBF4 can react to yield -PF2.[7]

Sodium phosphanide can react with ethyl alcohol in a diethyl carbonate solution to yield sodium 2-phosphaethynolate (NaOCP). Na(DME)2OCP is also formed from NaPH2 when reacted with CO in a dimethoxyethane (DME) solution under pressure.[8]

List

name formula system space group unit cell Å volume density M-P Å comment ref
lithium phosphanide LiPH2
Bis(1,2-dimethoxyethane-O,O′)lithium-phosphanide (dme)2LiPH2 monoclinic a=13.911 b=8.098 c=12.491 β=103.35° 1371.9 1.07 [9]
Li(PH2)(BEt3)2 [10]
LiPH2(BH3)2(THF)2 [10]
sodium dihydrogenphosphide NaPH2 [3]
Na13(PH2)(OtBu)12 [3]
tetraphosphanylsilane Si(PH2)4 [11]
KPH2 [3]
Ca(PH2)2•6NH3 [4]
Ca(PH2)2•2NH3 [4]
Cp2(CO)4Cr2(μ-PH2)(μ-H) [12]
Cp2(CO)4Cr2(μ-PH2)2 [12]
[(CO)4Cr(μ-PH2)]2 orthorhombic Cmca a =12.2545 b =11.5949 c=9.7196 [13]
(CO)4Cr(μ-PH2)2Cr(CO)3(PH3) triclinic P1 a=7.008 b=7.430 c=8.871, α =111.05° β=92.73° γ=114.08° [13]
Mn(PH2)2 · 3 NH3 [14]
K2[Mn(PH2)4] · 2 NH3 [14]
[(CO)4MnPH2]2 triclinic P1 a = 6.804, b = 7.064, c = 9.191, α =110.5°, β = 91.92°, γ =115.65°, Z = 1 [7][15]
(μ-PH2)2 · Mn2(CO8) + (μ-Br)(μ-PH2)Mn2(CO8) monoclinic P21/c a = 9.467, b = 12.181, c = 13.086, β = 109.98° 1418.2 [16]
[(CO)4MnPH2]3 monoclinic P2/n a = 9.052, b = 9.748, c = 12.642, β = 109.1°, Z = 2 [17][15]
(μ-Br)(μ-PH2)Mn2(CO8) [16]
[(CO)3Fe(μ-PH2)]2 monoclinic P21/m a =6.2476 b =12.982 c =7.2193 β =90.14° [13]
Cp(CO)2Fe(μ-PH2)Fe(CO)4 [3]
Co(PH2)3 [3][6]
KCo2(PH2)7 [3][6]
cp(CO)2Fe(μ-PH2)Fe(CO)4 monoclinic P21/c a = 7.336, b = 10.898, c = 17.616, β = 99.65°, Z = 4 2.29, 2.265 [17]
cp(CO)2Fe(μ-PH2)Fe(CO)(NO)2 [18]
cp(CO)2Fe(μ-PH2)Vcp(CO)3 [18]
cp(CO)2Fe(μ-PH2)Crcp(CO)(NO) [18]
cp(CO)2Fe(μ-PH2)Cr(CO)5 [18]
cp(CO)Fe(μ-CO, μ-PH2)Crcp(NO) [18]
cp(CO)2Fe(μ-PH2)MnMecp(CO)2 monoclinic P21 a = 7.501, b = 22.345, c = 9.741, β = 106.23°, Z = 4 [18][19]
cp(CO)2Fe(μ-PH2)Mn(NO)3 [18]
cp(CO)2Fe(μ-PH2)Mncp(CO)2 [18]
cp(CO)Fe(μ-CO, μ-PH2)Mncp(CO) [18]
cp(CO)Fe(μ-CO, μ-PH2)MnMecp(CO) [18]
2-phosphido)-octacarbonyl-iron-manganese FeMn(CO)8(μ-PH2) triclinic P1 a=7.8647 b=9.223 c=9.368, α=90.966° β=91.141° γ=110.032° [20]
Li+[FeMn(CO)83-PH)Mn(CO)4(μ-PH2)Fe(CO)4] [20]
Na+[FeMn(CO)83-PH)Mn(CO)4(μ-PH2)Fe(CO)4] [20]
K+[FeMn(CO)83-PH)Mn(CO)4(μ-PH2)Fe(CO)4] [20]
cp(CO)2Fe(μ-PH2)Co(CO)2(NO) [18]
Ni(PH2)2 [3][21]
[cpNiPH2]2 [22]
[cpNiPH2]3 rhombohedral R3 a = 16.861, c = 5.611 Z = 3 6 member ring [23][15]
K[Ni(PH2)3] orange, green or black [3][21]
cp(CO)2Fe(μ-PH2)Ni(CO)3 [17]
CH{(CMe)(2,6-iPr2C6H3N)}2GeIIPH2 monoclinic P21/c a=14.1380 b=16.3244 c=13.8086 β=116.379 Z=4 2855.1 1.213 orange or red [24]
[CH{(CMe)(2,6-iPr2C6H3N)}2GeIIP(H)]2 triclinic P1 a=10.8175 b=12.0783 c=2.6434 α=91.550 β=108.361 γ=111.339 Z=1 1441.49 1.203 red [24]
bisphosphanyl yttriate [(Me3Si)2Cp]2Y(PH2)2[Li(TMEDA)]2Cl [3]
(N,N',N''-[nitrilotri(ethane-2,1-diyl)]tris(t-butyl(dimethyl)silanamino))-phosphanyl-zirconium(iv) Zr(TrenDMBS)(PH2) TrenDMBS=N(CH2CH2NSiMe2But)3 orthorhombic Pbca a=19.978 b=15.4052 c=22.721 Zr−P=2.690 yellow [2]
{Cp(CO)2Mo}2(μ-PH2)(μ-H) [25][26]
Mo2Cp2(μ-PH2)2(CO)2 [27]
cp(CO)2Fe(μ-PH2)Mo(CO)5 [18]
{Cp(CO)2W}2(μ-PH2)(μ-H) [26]
W2Cp2(μ-PH2)2(CO)2 [27]
[(CO)4W(μ-PH2)]2 orthorhombic Cmca a=12.498 b=12.046 c=10.1185 [13]
[(CO)5W(μ-PH2)]2 [3]
(CO)4W(μ-PH2)2W(CO)3(PH3) a=7.008 b=7.430 c=8.871, α =111.05° β =92.73° γ=114.08° [13]
(CO)4W(μ-PH2)2W(CO)2(PH3)2 triclinic P1 a=7.014 b=9.386 c=13.632, α=70.15° β=79.82° γ=68.78° [13]
NMe3•H2BPH2••W(CO)5 [3]
phosphanylalane NMe3•H2AlPH2•W(CO)5 [3]
cp(CO)2Fe(μ-PH2)W(CO)5 [18]
phosphanygallane NMe3•H2GaPH2••W(CO)5 [3]
Re2(μ-PH2)2(CO)8 monoclinic P21/c a=9.808 b=12.326 c=13.299 β=109.08° Z=4 1519.4 2.896 yellow [28]
Re2(μ-H) · (μ-PH2)(CO)8 yellow [28]
Os(η2-O2CCH3)(PH2)(CO)(PPh3)2 [29]
Os(η2-N,N-dimethyldithiocarbamate)(PH2)(CO)(PPh3)2 [29]
Os(η2-acetylacetonate)(PH2)(CO)(PPh3)2 [29]
Os(η2-NO2)(PH2)(CO)(PPh3)2 [29]
OsCl- (PH2)(CO)2(PPh3)2 [30]
OsCl- (PH2)(CO)(PPh3)3 [30]
[Os(μ2-PH2)Cl(CO)(PPh3)2]2 triclinic P1 a 14.101, b 15.091, c 11.708, α 96.68, β 91.71, γ 63.92°, Z = 1 2222.0 [30]
OsH(PH2)(CO)2(PPh3)2 [30]
2-Hydrido)-(μ2-phosphido)-acetonitrilo-henicosacarbonyl-hexa-osmium Os6(μ-H)(CO)21(NCMe)(μ-PH2) monoclinic P21/n a=11.161 b=12.532 c =26.60, β=90.03° [31]
2-Phosphido)-(μ2-hydrido)-bis(undecacarbonyl-tri-osmium) Os6(μ-H)(CO)22(μ-PH2) monoclinic P21/c a =14.328 b =16.658 c =15.258, β =103.79° [31][32]
Os6(μ-H)(CO)21(CNBut)(μ-PH2) [31]
[Os6(μ-H)(CO)20{P(OMe)3}2(μ-PH2)]3 [31]
Ir(CO)ClH(PEt3)2(PH2) [3]
Ir(CO)BrH(PEt3)2(PH2) [3]
(Acetato-O,O')-(μ2-phosphonito)-carbonyl-iodo-bis(triphenylphosphine)-gold-osmium dichloromethane solvate Os(η2-O2CCH3)(PH2AuI)(CO)(PPh3)2 · (CH2Cl2)2 triclinic P1 a=12.320 b=13.962 c=14.122, α=96.76° β=101.93° γ=107.72° [29]
phosphanido-(N'-(triisopropylsilyl)-N,N-bis(2-((triisopropylsilyl)amino)ethyl)ethane-1,2-diaminato)-thorium(iv) Th(TrenTIPS)(PH2) monoclinic P21/n a=18.6189 b=22.6046 c=22.2818 β=113.726° 2.982 colourless [33]
PH2–UH 2.762 in solid argon [34]
TrenTIPS=N(CH2CH2NSiPri3)3 U(TrenTIPS)(PH2) monoclinic P21/n a=12.9994 b=16.2006 c=20.3678 β=91.313 Z=4 4288.3 2.883 yellow [35]

Derivatives

Some derivatives of phosphanides have also been studied where hydrogen is substituted by another group. They include bis(trimethylsilyl)phosphanide, bis (triisopropylsilyl) phosphanide, bis (trimethylsilyl) phosphanide, diphenyl phosphanide.[36][37]

References

  1. Red Book
  2. Stafford, Hannah; Rookes, Thomas M.; Wildman, Elizabeth P.; Balázs, Gábor; Wooles, Ashley J.; Scheer, Manfred; Liddle, Stephen T. (19 June 2017). "Terminal Parent Phosphanide and Phosphinidene Complexes of Zirconium(IV)". Angewandte Chemie International Edition. 56 (26): 7669–7673. doi:10.1002/anie.201703870. PMC 5575506. PMID 28489308.
  3. Hendrikus, Hendriksen, Coenradus Johannes (2012). Alkoxide packaged sodium dihydrogenphosphide: synthesis and reactivity (Thesis). ETH Zurich. doi:10.3929/ethz-a-007333135. hdl:20.500.11850/153552.{{cite thesis}}: CS1 maint: multiple names: authors list (link)
  4. Westerhausen, Matthias; Krieck, Sven; Langer, Jens; Al-Shboul, Tareq M.A.; Görls, Helmar (March 2013). "Phosphanides of calcium and their oxidation products". Coordination Chemistry Reviews. 257 (5–6): 1049–1066. doi:10.1016/j.ccr.2012.06.018.
  5. Han, Yong-Shen (2020). Chemical Transformations of Phosphine and Phosphido Ruthenium Complexes (Thesis). doi:10.25911/5f6b247b7012f. hdl:1885/209941.
  6. Mont, O. Schmitz-Du; Nagel, F.; Schaal, W. (1958-02-21). "Über einfache und komplexe Schwermetallphosphine und Polyphosphine". Angewandte Chemie (in German). 70 (4): 105. doi:10.1002/ange.19580700407.
  7. Schäfer, H.; Zipfel, J.; Gutekunst, B.; Lemmert, U. (October 1985). "Übergangsmetallphosphidokomplexe, IX. P-funktionelle Heterocyclische Mangan-Phosphor-Vier- und Sechsringkomplexe". Zeitschrift für anorganische und allgemeine Chemie (in German). 529 (10): 157–172. doi:10.1002/zaac.19855291021.
  8. Kosnik, Stephanie (2017). Building New Low Valent Phosphorus Molecules by P Transfer (Thesis).
  9. Becker, G.; Eschbach, B.; Mundt, O.; Reti, M.; Niecke, E.; Issberner, K.; Nieger, M.; Thelen, V.; Nöth, H.; Waldhör, R.; Schmidt, M. (1998). "Bis(1,2-dimethoxyethan-O,O′)lithium-phosphanid, -arsanid und -chlorid – drei neue Vertreter des Bis(1,2-dimethoxyethan-O,O′)lithium-bromid-Typs". Zeitschrift für Anorganische und Allgemeine Chemie. 624 (3): 469–482. doi:10.1002/(SICI)1521-3749(199803)624:3<469::AID-ZAAC469>3.0.CO;2-F.
  10. Bhattacharyya, Koyel X.; Dreyfuss, Sébastien; Saffon-Merceron, Nathalie; Mézailles, Nicolas (2016). "P 4 functionalization by hydrides: direct synthesis of P–H bonds". Chemical Communications. 52 (29): 5179–5182. doi:10.1039/C6CC01683A. PMID 26997653.
  11. Mitzel, Norbert W. (1999). "Parent Substances of Inorganic Chemistry: Homoleptic Pnictogenyl Compounds of Group 14, E(ZR2)4". Angewandte Chemie International Edition. 38 (1–2): 86–88. doi:10.1002/(SICI)1521-3773(19990115)38:1/2<86::AID-ANIE86>3.0.CO;2-8.
  12. Umbarkar, Shubhangi B.; Sekar, Perumal; Scheer, Manfred (2001-01-01). "Reactivity Study of the P 2 Ligand Complex [{CpCr(CO) 2 } 2 (μ,η 2 -P 2 )]". Phosphorus, Sulfur, and Silicon and the Related Elements. 169 (1): 205–208. doi:10.1080/10426500108546624. S2CID 96952262.
  13. Bauer, Susanne; Hunger, Cornelia; Bodensteiner, Michael; Ojo, Wilfried-Solo; Cros-Gagneux, Arnaud; Chaudret, Bruno; Nayral, Céline; Delpech, Fabien; Scheer, Manfred (3 November 2014). "Transition-Metal Complexes Containing Parent Phosphine or Phosphinyl Ligands and Their Use as Precursors for Phosphide Nanoparticles". Inorganic Chemistry. 53 (21): 11438–11446. doi:10.1021/ic5012082. PMID 25329878.
  14. Uecker, G.; Schmitz-DuMont, O. (December 1969). "Dihydrogenphosphide und Dihydrogenphosphidosalze der Übergangsmetalle. II. Bildung von Mangan(II)-dihydrogenphosphid und Kalium-tetra-dihydrogenphosphido-manganat(II)". Zeitschrift für anorganische und allgemeine Chemie (in German). 371 (5–6): 318–324. doi:10.1002/zaac.19693710514.
  15. Deppisch, Bertold; Schäfer, Hans; Binder, Dieter; Leske, Werner (December 1984). "Übergangsmetallphosphidokomplexe. VIII. Strukturuntersuchungen an Übergangsmetallphosphor-Vier- und Sechsringkomplexen. Die Strukturen von [(CO)4MnPH2]2, [(CO)4MnPH2]3 und [cpNiPH2]3". Zeitschrift für anorganische und allgemeine Chemie (in German). 519 (12): 53–66. doi:10.1002/zaac.19845191206.
  16. Flörke, U., ed. (1996-12-01). "μ -Bromo- μ -phosphido-bis(tetracarbonylmanganese) and di- μ -phosphido-bis(tetracarbonylmanganese). Co-crystallization and disorder". Zeitschrift für Kristallographie - Crystalline Materials. 211 (12): 908–910. doi:10.1524/zkri.1996.211.12.908.
  17. Schäfer, Hans (August 1980). "Übergangsmetallphosphidokomplexe. IV. Phosphido- und Bistrimethylsilylphosphidokomplexe des Eisens". Zeitschrift für anorganische und allgemeine Chemie (in German). 467 (1): 105–122. doi:10.1002/zaac.19804670113.
  18. Schäfer, H.; Leske, W. (September 1987). "Übergangsmetallphosphido-Komplexe. XIV. P-funktionelle phosphidoverbrückte Heterozweikern-komplexe mit und ohne Metall- Metall-Bindung; PH2-verbrückte cp(CO)xFe-Derivate". Zeitschrift für anorganische und allgemeine Chemie (in German). 552 (9): 50–68. doi:10.1002/zaac.19875520906.
  19. Schäfer, H.; Leske, W.; Mattern, G. (February 1988). "Übergangsmetallphosphidokomplexe. XVI. Die Strukturen von zwei offenkettigen, PH2-verbrückten Zweikernkomplexen cp(CO)2Fe(mu-PH2)MLn (MLn = Fe(CO)4, MnMecp(CO)2)". Zeitschrift für anorganische und allgemeine Chemie (in German). 557 (1): 59–68. doi:10.1002/zaac.19885570106.
  20. Colson, Adam C.; Whitmire, Kenton H. (2010-10-25). "Synthesis, Characterization, and Reactivity of the Heterometallic Dinuclear μ-PH 2 and μ-PPhH Complexes FeMn(CO) 8 (μ-PH 2 ) and FeMn(CO) 8 (μ-PPhH)". Organometallics. 29 (20): 4611–4618. doi:10.1021/om100736m.
  21. Schmitz-DuMont, O.; Uecker, G.; Schaal, W. (October 1969). "Dihydrogenphosphide und Dihydrogenphosphidosalze der Übergangsmetalle. I. Nickel(II)-dihydrogenphosphid und Kalium-tris-[dihydrogen-phosphido]-niccolat (II)". Zeitschrift für anorganische und allgemeine Chemie (in German). 370 (1–2): 67–79. doi:10.1002/zaac.19693700108.
  22. Schäffr, Hans; Zipfel, Jürgen; Migula, Brigitte; Binder, Dieter (June 1983). "Übergangsmetallphosphidokomplexe. VII. Ringgrößeneffekte bei den NMR-Daten von Übergangsmetallphosphor-Vier- und Sechsringkomplexen". Zeitschrift für anorganische und allgemeine Chemie (in German). 501 (6): 111–120. doi:10.1002/zaac.19835010613.
  23. Schäfer, H. (December 1979). "Übergangsmetallphosphidokomplexe. II. Phosphido- und Bistrimethylsilylphosphidokomplexe des Nickels". Zeitschrift für anorganische und allgemeine Chemie (in German). 459 (1): 157–169. doi:10.1002/zaac.19794590117.
  24. Yao, Shenglai; Brym, Markus; Merz, Klaus; Driess, Matthias (2008-07-01). "Facile Access to a Stable Divalent Germanium Compound with a Terminal PH 2 Group and Related PR 2 Derivatives". Organometallics. 27 (14): 3601–3607. doi:10.1021/om800269f.
  25. Vogel, Ulf; Sekar, Perumal; Ahlrichs, Reinhart; Huniar, Uwe; Scheer, Manfred (April 2003). "An Unusual Bonding Situation in a Novel Au I ‐Phosphido Complex with a Planar Au 3 P 3 Framework". European Journal of Inorganic Chemistry. 2003 (8): 1518–2522. doi:10.1002/ejic.200390197.
  26. Ebsworth, E.A.V.; McIntosh, A.P.; Schröder, M. (September 1986). "Polynuclear metal complexes incorporating hydrido-phosphido ligands". Journal of Organometallic Chemistry. 312 (2): c41–c43. doi:10.1016/0022-328X(86)80309-6.
  27. García, M. Esther; Riera, Víctor; Ruiz, Miguel A.; Rueda, M. Teresa; Sáez, David (2002-12-01). "Dimolybdenum and Ditungsten Cyclopentadienyl Carbonyls with Electron-Rich Phosphido Bridges. Synthesis of the Hydrido Phosphido Complexes [M 2 Cp 2 ( μ -H)( μ -PRR')(CO) 4 ] and Unsaturated Bis(phosphido) Complexes [M 2 Cp 2 ( μ -PR 2 )( μ -PR'R' ')(CO) x ] ( x = 1, 2; R, R', R' ' = Et, Cy, t Bu)". Organometallics. 21 (25): 5515–5525. doi:10.1021/om020573f.
  28. Haupt, H.-J.; Krampe, O.; Flörke, U. (May 1996). "Darstellung und Molekülstrukturen von oligofunktionalen Dirheniumcarbonylderivaten aus Dirheniumnonacarbonylphosphan". Zeitschrift für anorganische und allgemeine Chemie (in German). 622 (5): 807–812. doi:10.1002/zaac.19966220510.
  29. Bohle, D.Scott; Clark, George R.; Rickard, Clifton E.F.; Roper, Warren R. (August 1990). "Organotransition metal substituted primary phosphines: osmium phosphido (PH2) complexes". Journal of Organometallic Chemistry. 393 (2): 243–285. doi:10.1016/0022-328X(90)80204-D.
  30. Scott Bohle, D.; Clark, George R.; Rickard, Clifton E.F.; Roper, Warren R.; Taylor, Michael J. (July 1988). "Phosphine (PH3) complexes of ruthenium, osmium and iridium as precursors of terminal phosphido (PH2) complexes and the crystal structure of [Os(μ2-PH2) Cl(CO) (PPh3)2]2 · (C2H2Cl4)4". Journal of Organometallic Chemistry. 348 (3): 385–409. doi:10.1016/0022-328X(88)80421-2.
  31. Johnson, Brian F.G.; Lewis, Jack; Nordlander, Ebbe; Raithby, Paul R. (January 1997). "The crystal and molecular structure of [Os6(μ-H)(CO)21(NCMe)(μ-PH2)]". Polyhedron. 16 (19): 3463–3467. doi:10.1016/S0277-5387(97)00060-0.
  32. Johnson, Brian F. G.; Lewis, Jack; Nordlander, Ebbe; Owen, Steven M.; Raithby, Paul R. (1996). "Systematic synthesis of hexanuclear phosphido-bridged osmium clusters; crystal and molecular structure of [Os 6 (µ-H)(CO) 22 (µ-PH 2 )]". J. Chem. Soc., Dalton Trans. (8): 1567–1571. doi:10.1039/DT9960001567.
  33. Wildman, Elizabeth P.; Balázs, Gábor; Wooles, Ashley J.; Scheer, Manfred; Liddle, Stephen T. (November 2016). "Thorium–phosphorus triamidoamine complexes containing Th–P single- and multiple-bond interactions". Nature Communications. 7 (1): 12884. doi:10.1038/ncomms12884. PMC 5056418. PMID 27682617.
  34. Andrews, Lester; Cho, Han-Gook; Thanthiriwatte, K. Sahan; Dixon, David A. (2017-03-06). "Thorium and Uranium Hydride Phosphorus and Arsenic Bearing Molecules with Single and Double Actinide-Pnictogen and Bridged Agostic Hydrogen Bonds". Inorganic Chemistry. 56 (5): 2949–2957. doi:10.1021/acs.inorgchem.6b03055. PMID 28195738.
  35. Gardner, Benedict M.; Balázs, Gábor; Scheer, Manfred; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T. (2014-04-22). "Triamidoamine-Uranium(IV)-Stabilized Terminal Parent Phosphide and Phosphinidene Complexes" (PDF). Angewandte Chemie International Edition. 53 (17): 4484–4488. doi:10.1002/anie.201400798. PMID 24644135. S2CID 1735535.
  36. Driess, Matthias; Pritzkow, Hans; Skipinski, Markus; Winkler, Uwe (1 October 1998). "Intriguing Tetrasodium Dication Cluster Na 4 2+ Stabilized between Two Silyl(fluorosilyl)phosphanide Shells". Journal of the American Chemical Society. 120 (41): 10774–10775. doi:10.1021/ja9822963.
  37. A. G. Sykes (19 April 2000). Main Chemistry Group. Advances in Inorganic Chemistry. Vol. 50. Elsevier. p. 246. ISBN 978-0-08-049365-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.