Nitridosilicate

The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement.[1]

Related compounds include pnictogenidosilicates :phosphidosilicates, arsenidosilicates and antimonosilicates; pnictogenidogernamates: phosphidogermanates. By replacing silicon, there are also nitridogermanates, nitridostannates, nitridotantalates and nitridotitanates.

Use

Nitridosilicates are used as host substances for europium in LED phosphors. Examples include CASN (calcium aluminium silicide nitride) (CaAlSiN3), SCASN (SrCaAlSiN3) and SCSN (SrCaSiN3). These fluoresce red.[2]

Production

Nitridosilicates can be made in a solid state reaction by heating silicon nitride with metallic nitrides in a nitrogen atmosphere at over 1300°C. If the mixtures are exposed to oxygen or air, then oxides or oxynitridosilicates are produced instead. Instead of metal nitrides, ammine complexes, amides or imides can be used instead. In place of the highly stable silicon nitride, silicon diimide can be used.[3] Carbothermal reduction involves using a metal oxide or carbonate heated with carbon in a nitrogen atmosphere.[4]

Properties

The ratio of silicon to nitrogen varies from 1:4 to 7:10 (0.25 to 0.7) with increased condensation, and fewer sites for metals with high silicon content. At a ratio of 3:4 (0.75) there is no longer capacity for metal, as that is silicon nitride.[5] The more condensed substances, with lower nitrogen content, have greater number of silicon atoms surrounding the nitrogen. This coordination number can vary from one to four, with the most common being three. The silicon atom always is coordinated by four nitrogen atoms. In the silicates, silicon is surrounded by four oxygen atoms, but each oxygen is only connected to one or two silicon atoms, and only very rarely three. So nitridosilicates can form more diverse structures than the silicates.[6]

Nitridosilicates with higher proportion of silicon (more condensed) are more resistant to attack by water and oxygen, and so can be exposed to the atmosphere without decomposition.[6] These condensed nitridosilicates are mechanically strong, and resistant to heat, acids and alkalis.[1]

SiN4 tetrahedra can be connected to each other via vertices or edges. This differs from SiO4 which only connects via vertices.[1]

Use

Nitridosilicates have been used to make abrasives, turbine blades, cutting tools and phosphors.[4]

Nitridosilicates

name formula formula

weight

crystal

system

space

group

unit cell volume density comments ref
LiSi2N3 [5]
Li2SiN2 [7]
Li5SiN3 [7]
Li8SiN4 [8]
Li18Si3N10 [7]
Li21Si3N11 I4 a=9.4584 c=9.5194 antifluorite structure [7]
BeSiN2 [9]
MgSiN2 [5]
NaSi2N3 [9]
Ca2Si5N8 332.64 monoclinic Cc a = 14.3280 b = 5.61165 c = 9.69406 β = 112.1484 Z=4 721.92 3.06 Eu orange fluorescence [5][10][4]
CaSiN2 [5]
Ca3SiN3H monoclinic C2/c a = 5.236 b = 10.461 c = 16.389 β = 91.182° Z = 8 semiconductor: band gap 3.1 eV [11]
Ca4SiN4 [5]
Ca5Si2N6 [5]
Ca16Si17N34 [5]
Li4Ca3Si2N6 288.24 monoclinic C2/m a=5.787 b=9.705 c=5.977 β=90.45 335.7 2.852 [5][12]
Li2CaSi2N4 [5]
Li2Ca2Mg2Si2N6 [5]
Li2Ca3MgSi2N6 [5]
CaMg3SiN4 [9]
CaAlSiN3 orthorhombic Cmc21 Eu yellow fluorescence [13]
CaAlSi4N7 orthorhombic Pna21 a = 11.6819, b = 21.0193, c = 4.9177 Å [14]
Ca5Al2Si2N8 [9]
CaScSi4N7 [5]
Manganese silicide dinitride MnSiN2 orthorhombic Pna21 a = 5.271, b = 6.521, and c = 5.0706 V=174.26 intense red [8]
Fe2Si5N8 364.23 monoclinic Cc a= 14.0408 b = 5.32635 c = 9.5913 β = 110.728 Z=4 decompose 1370K; brown [10]
ZnSiN2 [9]
SrSiN2 [5]
Sr2Si5N8 orthorhombic Pmn21 a = 5.71006 b = 6.81914 c = 9.33599 Z=2 363.52 3.908 Eu red fluorescence [5][4][15]
SrSi6N8 [5]
SrSi7N10 [14]
Li2SrSi2N4 cubic a=10.69 Z=12 1220 [5][16]
Li4Sr3Si2N6 monoclinic C2/m a = 6.127, b = 9.687, c = 6.220, β = 90.24° Z=2 369.1 3.876 [12]
SrMg3SiN4 [9]
SrAlSiN3 Cmc21 [13]
SrAlSi4N7 Pna21 [14]
SrScSi4N7 [5]
CaYSi4N7 [5]
SrYSi4N7 [5]
Ca8In2SiN4 orthorhombic Ibam a = 12.904 b = 9.688 c = 10.899 Z = 4 metallic [11]
BaSiN2 [5]
Ba5Si2N6 [9]
Ba2Si5N8 orthorhombic Pmn21 Eu red fluorescence [5][4]
BaSi6N8 Imm2 a = 7.9316, b = 9.3437, c = 4.8357, Z = 2 358.38 [5][17]
BaSi7N10 monoclinic a = 6.8729, b = 6.7129, c = 9.6328, β = 106.269, Z = 2 most condensed [5][18]
Carbodiimide Ba6Si6N10O2(CN2) P6 a = 16.255, c = 5.469, Z = 3 yellow, grown in liquid sodium [19]
Ba5Si11Al7N25 Pnnm a = 9.5923, b = 21.3991, c = 5.8889 Å Z = 2 with Eu yellow emission [20]
BaSi4Al3N9 P21/C a = 5.8465, b = 26.726, c = 5.8386 Å, β = 118.897° and Z = 4 with Eu blue emission [20]
BaScSi4N7 [5]
BaYSi4N7 [5]
LaSi3N5 [5]
La3Si6N11 [5]
La5Si3N9 [9]
La7Si6N15 [9]
calcium lanthanum nitridosilicate CaLaSiN3 Ca can be substituted by Yb or Eu [21]
CaLaSi4N7 [5]
CeSi3N5 [9]
Ce3Si6N11 [9]
Ce3Si5N9 [9]
Ce7Si6N15 triclinic [9]
Ce7Si6N15 trigonal [9]
Pr3Si6N11 [9]
Pr5Si3N9 [9]
Pr7Si6N15 [9]
Ba2Nd7Si11N23 dark blue [22]
Sm3Si6M11 [9]
Ca3Sm3[Si9N17] cubic P4_3m a=7.3950; Z=1 404.4 [23]
Eu2SiN3 Cmca a = 5.42, b = 10.610, c = 11.629, Z = 8 [9][24]
dieuropium penta siliconoctanitride Eu2Si5N8 orthorhombic Pnm21 a=5.7094 b=6.8207 c=9.3291 Z=2 363.29 5.087 red [9][25]
Ca3Yb3[Si9N17] cubic P4_3m a=730.20 Z=1 389.3 [23]
BaYbSi4N7 includes NSi4 clusters [9][26]
europium ytterbium tetrasiliconheptanitride EuYbSi4N7 hexagonal P63mc a=5.9822 c=9.7455 302.03 5.887 brown [9][25]
SrYbSi4N7 [9]
EuYbSi4N7 [9]
CaLuSi4N7 [5]
SrLuSi4N7 [5]
BaLuSi4N7 [5]
Pb2Si5N8 666.90 orthorhombic Pmn21 a = 5.774 b = 6.837 c = 9.350 269.11 6.001 Pb-Pb dumbells [15]

References

  1. Philipp Bielec (27 July 2019). The Ion Exchange Approach - Expanding Elemental Variety in Nitridosilicate Chemistry (PDF) (Thesis).
  2. Schubert, E. Fred (3 February 2018). Light-Emitting Diodes (3rd ed.). E. Fred Schubert. ISBN 978-0-9863826-6-6.
  3. Schnick, Wolfgang; Huppertz, Hubert (May 1997). "Nitridosilicates-A Significant Extension of Silicate Chemistry". Chemistry - A European Journal. 3 (5): 679–683. doi:10.1002/chem.19970030505.
  4. Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi (21 June 2010). "Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications". Materials. 3 (6): 3777–3793. Bibcode:2010Mate....3.3777X. doi:10.3390/ma3063777. PMC 5521753. S2CID 18883144.open access
  5. ten Kate, Otmar M.; Zhang, Zhijun; van Ommen, J. Ruud; Hintzen, H. T. (Bert) (2018). "Dependence of the photoluminescence properties of Eu 2+ doped M–Si–N (M = alkali, alkaline earth or rare earth metal) nitridosilicates on their structure and composition". Journal of Materials Chemistry C. 6 (21): 5671–5683. doi:10.1039/C8TC00885J. ISSN 2050-7526.
  6. ten Kate, Otmar M.; Zhang, Zhijun; Hintzen, H. T. (Bert) (2017). "On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates". Journal of Materials Chemistry C. 5 (44): 11504–11514. doi:10.1039/C7TC04259K. ISSN 2050-7526.
  7. Casas-Cabanas, M.; Santner, H.; Palacín, M.R. (May 2014). "The Li–Si–(O)–N system revisited: Structural characterization of Li21Si3N11 and Li7SiN3O". Journal of Solid State Chemistry. 213: 152–157. Bibcode:2014JSSCh.213..152C. doi:10.1016/j.jssc.2014.02.022.
  8. Esmaeilzadeh, Saeid; Hålenius, Ulf; Valldor, Martin (May 2006). "Crystal Growth, Magnetic, and Optical Properties of the Ternary Nitride MnSiN 2". Chemistry of Materials. 18 (11): 2713–2718. doi:10.1021/cm060382t.
  9. Kong, Yuwei; Song, Zhen; Wang, Shuxin; Xia, Zhiguo; Liu, Quanlin (2018-02-19). "The Inductive Effect in Nitridosilicates and Oxysilicates and Its Effects on 5d Energy Levels of Ce 3+". Inorganic Chemistry. 57 (4): 2320–2331. doi:10.1021/acs.inorgchem.7b03253. ISSN 0020-1669. PMID 29394040.
  10. Bielec, Philipp; Janka, Oliver; Block, Theresa; Pöttgen, Rainer; Schnick, Wolfgang (2018-02-23). "Fe 2 Si 5 N 8 : Access to Open-Shell Transition-Metal Nitridosilicates". Angewandte Chemie International Edition. 57 (9): 2409–2412. doi:10.1002/anie.201713006. PMID 29336096.
  11. Dickman, Matthew J.; Schwartz, Benjamin V. G.; Latturner, Susan E. (2017-08-07). "Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca 8 In 2 SiN 4 and Semiconductor Ca 3 SiN 3 H". Inorganic Chemistry. 56 (15): 9361–9368. doi:10.1021/acs.inorgchem.7b01532. ISSN 0020-1669. PMID 28749660.
  12. Pagano, Sandro; Lupart, Saskia; Schmiechen, Sebastian; Schnick, Wolfgang (September 2010). "Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions". Zeitschrift für anorganische und allgemeine Chemie. 636 (11): 1907–1909. doi:10.1002/zaac.201000163.
  13. Watanabe, Hiromu; Wada, Hiroshi; Seki, Keiichi; Itou, Masumi; Kijima, Naoto (2008). "Synthetic Method and Luminescence Properties of Sr[sub x]Ca[sub 1−x]AlSiN[sub 3]:Eu[sup 2+] Mixed Nitride Phosphors". Journal of the Electrochemical Society. 155 (3): F31. doi:10.1149/1.2829880.
  14. Yoshimura, Fumitaka; Yamane, Hisanori; Yamada, Takahiro (2020-01-06). "Synthesis, Crystal Structure, and Luminescence Properties of a White-Light-Emitting Nitride Phosphor, Ca 0.99 Eu 0.01 AlSi 4 N 7". Inorganic Chemistry. 59 (1): 367–375. doi:10.1021/acs.inorgchem.9b02609. ISSN 0020-1669. PMID 31808685. S2CID 208744271.
  15. Bielec, Philipp; Nelson, Ryky; Stoffel, Ralf P.; Eisenburger, Lucien; Günther, Daniel; Henß, Ann‐Kathrin; Wright, Jonathan P.; Oeckler, Oliver; Dronskowski, Richard; Schnick, Wolfgang (2019-01-28). "Cationic Pb 2 Dumbbells Stabilized in the Highly Covalent Lead Nitridosilicate Pb 2 Si 5 N 8". Angewandte Chemie International Edition. 58 (5): 1432–1436. doi:10.1002/anie.201812457. ISSN 1433-7851. PMID 30536686. S2CID 54473446.
  16. Ding, Jianyan; You, Hongpeng; Wang, Yichao; Ma, Bo; Zhou, Xufeng; Ding, Xin; Cao, Yaxin; Chen, Hang; Geng, Wanying; Wang, Yuhua (2018). "Site occupation and energy transfer of Ce 3+ -activated lithium nitridosilicate Li 2 SrSi 2 N 4 with broad-yellow-light-emitting property and excellent thermal stability". Journal of Materials Chemistry C. 6 (13): 3435–3444. doi:10.1039/C7TC04397J. ISSN 2050-7526.
  17. Stadler, Florian; Schnick, Wolfgang (April 2007). "Das reduzierte Nitridosilicat BaSi6N8". Zeitschrift für anorganische und allgemeine Chemie (in German). 633 (4): 589–592. doi:10.1002/zaac.200600356.
  18. Huppertz, Hubert; Schnick, Wolfgang (February 1997). "Edge-sharing SiN 4 Tetrahedra in the Highly Condensed Nitridosilicate BaSi 7 N 10". Chemistry - A European Journal. 3 (2): 249–252. doi:10.1002/chem.19970030213. PMID 24022955.
  19. Pagano, Sandro; Oeckler, Oliver; Schröder, Thorsten; Schnick, Wolfgang (June 2009). "Ba 6 Si 6 N 10 O 2 (CN 2 ) - A Nitridosilicate with a NPO-Zeolite Structure Type Containing Carbodiimide Ions". European Journal of Inorganic Chemistry. 2009 (18): 2678–2683. doi:10.1002/ejic.200900157.
  20. Hirosaki, Naoto; Takeda, Takashi; Funahashi, Shiro; Xie, Rong-Jun (2014-07-22). "Discovery of New Nitridosilicate Phosphors for Solid State Lighting by the Single-Particle-Diagnosis Approach". Chemistry of Materials. 26 (14): 4280–4288. doi:10.1021/cm501866x. ISSN 0897-4756.
  21. ten Kate, O M; Hintzen, H T; van der Kolk, E (24 September 2014). "Low energy 4f-5d transitions in lanthanide doped CaLaSiN 3 with low degree of cross-linking between SiN 4 tetrahedra". Journal of Physics: Condensed Matter. 26 (38): 385502. Bibcode:2014JPCM...26L5502T. doi:10.1088/0953-8984/26/38/385502. PMID 25186054. S2CID 29879915.
  22. Huppertz, Hubert; Schnick, Wolfgang (1997-12-15). "Ba2Nd7Si11N23—A Nitridosilicate with a Zeolite-Analogous Si–N Structure". Angewandte Chemie International Edition in English. 36 (23): 2651–2652. doi:10.1002/anie.199726511. ISSN 0570-0833.
  23. Huppertz, Hubert; Oeckler, Oliver; Lieb, Alexandra; Glaum, Robert; Johrendt, Dirk; Tegel, Marcus; Kaindl, Reinhard; Schnick, Wolfgang (2012-08-27). "Ca 3 Sm 3 [Si 9 N 17 ] and Ca 3 Yb 3 [Si 9 N 17 ] Nitridosilicates with Interpenetrating Nets that Consist of Star-Shaped [N [4] (SiN 3 ) 4 ] Units and [Si 5 N 16 ] Supertetrahedra". Chemistry - A European Journal. 18 (35): 10857–10864. doi:10.1002/chem.201200813. PMID 22829445.
  24. Zeuner, Martin; Pagano, Sandro; Matthes, Philipp; Bichler, Daniel; Johrendt, Dirk; Harmening, Thomas; Pöttgen, Rainer; Schnick, Wolfgang (2009-08-12). "Mixed Valence Europium Nitridosilicate Eu 2 SiN 3". Journal of the American Chemical Society. 131 (31): 11242–11248. doi:10.1021/ja9040237. ISSN 0002-7863. PMID 19610643.
  25. Huppertz, H.; Schnick, W. (1997-12-15). "Eu 2 Si 5 N 8 and EuYbSi 4 N 7 . The First Nitridosilicates with a Divalent Rare Earth Metal". Acta Crystallographica Section C Crystal Structure Communications. 53 (12): 1751–1753. doi:10.1107/S0108270197008767. ISSN 0108-2701.
  26. Huppertz, Hubert; Schnick, Wolfgang (1996-09-20). "BaYbSi4N7—Unexpected Structural Possibilities in Nitridosilicates". Angewandte Chemie International Edition in English. 35 (17): 1983–1984. doi:10.1002/anie.199619831. ISSN 0570-0833.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.