Orders of magnitude (magnetic field)
This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.
Note:
Examples
These examples attempt to make the measuring point clear, usually the surface of the item mentioned.
Factor (tesla) | SI prefix | Value (SI units) | Value (CGS units) | Item |
---|---|---|---|---|
10−18 | attotesla | 5 aT | 50 fG | SQUID magnetometers on Gravity Probe B gyroscopes measure fields at this level over several days of averaged measurements[2] |
10−15 | femtotesla | 2 fT | 20 pG | SQUID magnetometers on Gravity Probe B gyros measure fields at this level in about one second |
10−12 | picotesla | 100 fT to 1 pT | 1 nG to 10 nG | Human brain magnetic field |
10−11 | 10 pT | 100 nG | In September 2006, NASA found "potholes" in the magnetic field in the heliosheath around the Solar System that are 10 picoteslas as reported by Voyager 1[3] | |
10−9 | nanotesla | 100 pT to 10 nT | 1 μG to 100 μG | Magnetic field strength in the heliosphere |
10−7 | 60 nT to 700 nT | 600 μG to 7 mG | Magnetic field produced by a toaster, in use, at a distance of 30 cm (1 ft)[4] | |
100 nT to 500 nT | 1 mG to 5 mG | Magnetic field produced by residential electric distribution lines (34.5 kV) at a distance of 15 m (49 ft)[4][5] | ||
10−6 | microtesla | 1.3 μT to 2.7 μT | 13 mG to 27 mG | Magnetic field produced by high power (500 kV) transmission lines at a distance of 30 m (100 ft)[5] |
4 μT to 8 μT | 40 mG to 80 mG | Magnetic field produced by a microwave oven, in use, at a distance of 30 cm (1 ft)[4] | ||
10−5 | 24 μT | 240 mG | Strength of magnetic tape near tape head | |
31 μT | 310 mG | Strength of Earth's magnetic field at 0° latitude (on the equator) | ||
58 μT | 580 mG | Strength of Earth's magnetic field at 50° latitude | ||
10−4 | 500 μT | 5 G | The suggested exposure limit for cardiac pacemakers by American Conference of Governmental Industrial Hygienists (ACGIH) | |
10−3 | millitesla | 5 mT | 50 G | The strength of a typical refrigerator magnet[6] |
10−2 | centitesla | |||
10−1 | decitesla | 150 mT | 1.5 kG | The magnetic field strength of a sunspot |
100 | tesla | 1 T to 2.4 T | 10 kG to 24 kG | Coil gap of a typical loudspeaker magnet.[7] |
1 T to 2 T | 10 kG to 20 kG | Inside the core of a modern 50/60 Hz power transformer[8][9] | ||
1.25 T | 12.5 kG | Strength of a modern neodymium–iron–boron (Nd2Fe14B) rare earth magnet. A coin-sized neodymium magnet can lift more than 9 kg, and erase credit cards.[10] | ||
1.5 T to 7 T | 15 kG to 70 kG | Strength of medical magnetic resonance imaging systems in practice, experimentally up to 11.7 T[11][12][13] | ||
9.4 T | 94 kG | Modern high resolution research magnetic resonance imaging system; field strength of a 400 MHz NMR spectrometer | ||
101 | decatesla | 11.7 T | 117 kG | Field strength of a 500 MHz NMR spectrometer |
16 T | 160 kG | Strength used to levitate a frog[14] | ||
23.5 T | 235 kG | Field strength of a 1 GHz NMR spectrometer[15] | ||
32 T | 235 kG | Strongest continuous magnet field produced by all-superconducting magnet[16][17] | ||
38 T | 380 kG | Strongest continuous magnetic field produced by non-superconductive resistive magnet[18] | ||
45.22 T | 452.2 kG | Strongest continuous magnetic field yet produced in a laboratory (Steady High Magnetic Field Facility (SHMFF) in Hefei, China,2022)[19](Previous record 45 T, 1999[20]) | ||
102 | hectotesla | 100 T | 1 MG | Strongest pulsed non-destructive magnetic field produced in a laboratory, Pulsed Field Facility at National High Magnetic Field Laboratory's, Los Alamos National Laboratory, Los Alamos, NM, USA).[21] |
103 | kilotesla | 1.2 kT | 12 MG | Record for indoor pulsed magnetic field, (University of Tokyo, 2018) [22] |
2.8 kT | 28 MG | Record for human produced, pulsed magnetic field, (VNIIEF, 2001)[23] | ||
104 | 35 kT | 350 MG | Magnetic field felt by valence electrons in a xenon atom due to the spin–orbit effect.[24] | |
106 | megatesla | 1 MT to 100 MT | 10 GG to 1 TG | Strength of a non-magnetar neutron star.[25] |
108 – 1011 | gigatesla | 100 MT to 100 GT | 1 TG to 1 PG | Strength of a magnetar.[25] |
1013 | teratesla | 16 TT | 160 PG | Swift J0243.6+6124 most magnetic pulsar.[26][27] |
1014 | 100 TT | 1 EG | Strength of magnetic fields inside heavy ion collisions at RHIC.[28][29] | |
References
- "Bureau International des Poids et Mesures, The International System of Units (SI), 8th edition 2006" (PDF). bipm.org. 2012-10-01. Retrieved 2013-05-26.
- Range, Shannon K'doah. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. National Aeronautics and Space Administration. October 2004.
- "Surprises from the Edge of the Solar System". NASA. 2006-09-21. Archived from the original on 2008-09-29. Retrieved 2017-07-12.
- "Magnetic Field Levels Around Homes" (PDF). UC San Diego Dept. of Environment, Health & Safety (EH&S). p. 2. Retrieved 2017-03-07.
- "EMF in Your Environment: Magnetic Field Measurements of Everyday Electrical Devices". United States Environmental Protection Agency. 1992. pp. 23–24. Retrieved 2017-03-07.
- "Information on MRI Technique". Nevus Network. Retrieved 2014-01-28.
- Elliot, Rod. "Power Handling Vs. Efficiency". Retrieved 2008-02-17.
- "Inductors and transformers" (PDF). eece.ksu.edu. 2003-08-12. Archived from the original (PDF) on September 8, 2008. Retrieved 2013-05-26.
A modern well-designed 60 Hz power transformer will probably have a magnetic flux density between 1 and 2 T inside the core.
- "Trafo-Bestimmung 3von3". radiomuseum.org. 2009-07-11. Retrieved 2013-06-01.
- "The Tesla Radio Conspiracy". teslaradioconspiracy.blogspot.com.
- Savage, Niel (2013-10-23). "The World's Most Powerful MRI Takes Shape".
- Smith, Hans-Jørgen. "Magnetic resonance imaging". Medcyclopaedia Textbook of Radiology. GE Healthcare. Archived from the original on 2012-02-07. Retrieved 2007-03-26.
- Orenstein, Beth W. (2006-02-16). "Ultra High-Field MRI — The Pull of Big Magnets". Radiology Today. Vol. 7, no. 3. p. 10. Archived from the original on March 15, 2008. Retrieved 2008-07-10.
- "Frog defies gravity". New Scientist. No. 2077. 12 April 1997.
- "23.5 Tesla Standard-Bore, Persistent Superconducting Magnet". Archived from the original on 2013-06-28. Retrieved 2013-05-08.
- "32 Tesla All-Superconducting Magnet". National High Magnetic Field Laboratory.
- Liu, Jianhua; Wang, Qiuliang; Qin, Lang; Zhou, Benzhe; Wang, Kangshuai; Wang, Yaohui; Wang, Lei; Zhang, Zili; Dai, Yinming; Liu, Hui; Hu, Xinning; Wang, Hui; Cui, Chunyan; Wang, Dangui; Wang, Hao (2020-03-01). "World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet". Superconductor Science and Technology. 33 (3): 03LT01. Bibcode:2020SuScT..33cLT01L. doi:10.1088/1361-6668/ab714e. ISSN 0953-2048. S2CID 213171620.
- ingevoerd, Geen OWMS velden. "HFML sets world record with a new 38 tesla magnet". Radboud Universiteit.
- "World's strongest steady magnetic field generated in China". New Atlas. 2022-08-16. Retrieved 2022-08-22.
- "Mag Lab Press Release: World's Most Powerful Magnet Tested Ushers in New Era for Steady High Field Research (December 17, 1999)". legacywww.magnet.fsu.edu. Retrieved 2022-08-22.
- "Pulsed Field Facility - MagLab". Pulsed Field Facility.
- Nakamura, D.; Ikeda, A.; Sawabe, H.; Matsuda, Y. H.; Takeyama, S. (2018). "Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression". Review of Scientific Instruments. 89 (9): 095106. Bibcode:2018RScI...89i5106N. doi:10.1063/1.5044557. PMID 30278742. S2CID 52908507.
- Bykov, A.I.; Dolotenko, M.I.; Kolokolchikov, N.P.; Selemir, V.D.; Tatsenko, O.M. (2001). "VNIIEF achievements on ultra-high magnetic fields generation". Physica B: Condensed Matter. 294–295: 574–578. Bibcode:2001PhyB..294..574B. doi:10.1016/S0921-4526(00)00723-7.
- Herman, Frank (15 December 1963). "Relativistic Corrections to the Band Structure of Tetrahedrally Bonded Semiconductors". Physical Review Letters. 11 (541): 541–545. Bibcode:1963PhRvL..11..541H. doi:10.1103/PhysRevLett.11.541.
- Kouveliotou, Chryssa; Duncan, Robert; Thompson, Christopher (February 2003). "Magnetars". Sci. Am. 288 (288N2): 34–41. Bibcode:2003SciAm.288b..34K. doi:10.1038/scientificamerican0203-34. PMID 12561456. Retrieved 7 January 2019.
- Kong, Ling-Da; Zhang, Shu; Zhang, Shuang-Nan; Ji, Long; Doroshenko, Victor; Santangelo, Andrea; Chen, Yu-Peng; Lu, Fang-Jun; Ge, Ming-Yu; Wang, Peng-Ju; Tao, Lian; Qu, Jin-Lu; Li, Ti-Pei; Liu, Cong-Zhan; Liao, Jin-Yuan (2022-07-01). "Insight-HXMT Discovery of the Highest-energy CRSF from the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124". The Astrophysical Journal Letters. 933 (1): L3. arXiv:2206.04283. Bibcode:2022ApJ...933L...3K. doi:10.3847/2041-8213/ac7711. ISSN 2041-8205.
- "Astronomers measure strongest magnetic field ever detected". New Atlas. 2022-07-15. Retrieved 2022-08-22.
- Tuchin, Kirill (2013). "Particle production in strong electromagnetic fields in relativistic heavy-ion collisions". Adv. High Energy Phys. 2013: 490495. arXiv:1301.0099. doi:10.1155/2013/490495. S2CID 4877952.
- Bzdak, Adam; Skokov, Vladimir (29 March 2012). "Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions". Physics Letters B. 710 (1): 171–174. arXiv:1111.1949. Bibcode:2012PhLB..710..171B. doi:10.1016/j.physletb.2012.02.065. S2CID 118462584.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.