List of sequenced algae genomes
This list of sequenced algal genomes contains algal species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle-only sequences. For plant genomes see the list of sequenced plant genomes. For plastid sequences, see the list of sequenced plastomes. For all kingdoms, see the list of sequenced genomes.
Dinoflagellates (Alveolata)
See also List of sequenced protist genomes.
Organism
strain |
Type | Relevance | Genome size | Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Breviolum minutum (Symbiodinium minutum; clade B1) | Dinoflagellate | Coral symbiont | 1.5 Gb | 47,014 | Okinawa Institute of Science and Technology | 2013[1] | Draft | OIST Marine Genomics[2] |
Cladocopium goreaui (Symbiodinium goreaui; clade C, type C1) | Dinoflagellate | Coral symbiont | 1.19 Gb | 35,913 | Reef Future Genomics (ReFuGe) 2020 / University of Queensland | 2018[3] | Draft | ReFuGe 2020[4] |
Cladocopium C92 strain Y103 (Symbiodinium sp. clade C; putative type C92) | Dinoflagellate | Foraminiferan symbiont | Unknown (assembly size 0.70 Gb) | 65,832 | Okinawa Institute of Science and Technology | 2018[5] | Draft | OIST Marine Genomics[2] |
Fugacium kawagutii CS156=CCMP2468 (Symbiodinium kawagutii; clade F1) | Dinoflagellate | Coral symbiont? | 1.07 Gb | 26,609 | Reef Future Genomics (ReFuGe) 2020 / University of Queensland | 2018[3] | Draft | ReFuGe 2020[4] |
Fugacium kawagutii CCMP2468 (Symbiodinium kawagutii; clade F1) | Dinoflagellate | Coral symbiont? | 1.18 Gb | 36,850 | University of Connecticut / Xiamen University | 2015[6] | Draft | S. kawagutii genome project[7] |
Polarella glacialis CCMP1383 | Dinoflagellate | Psychrophile, Antarctic | 3.02 Gb (diploid), 1.48 Gbp (haploid) | 58,232 | University of Queensland | 2020[8] | Draft | UQ eSpace[9] |
Polarella glacialis CCMP2088 | Dinoflagellate | Psychrophile, Arctic | 2.65 Gb (diploid), 1.30 Gbp (haploid) | 51,713 | University of Queensland | 2020[8] | Draft | UQ eSpace[9] |
Symbiodinium microadriaticum (clade A) | Dinoflagellate | Coral symbiont | 1.1 Gb | 49,109 | King Abdullah University of Science and Technology | 2016[10] | Draft | Reef Genomics[11] |
Symbiodinium A3 strain Y106 (Symbiodinium sp. clade A3) | Dinoflagellate | symbiont | Unknown (assembly size 0.77 Gb) | 69,018 | Okinawa Institute of Science and Technology | 2018[5] | Draft | OIST Marine Genomics[2] |
Cryptomonad
Organism
strain |
Type | Relevance | Genome size | Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Cryptophyceae sp. CCMP2293 | Nanoflagellate | Nucleomorph, Psychrophile | 534.5 Mb | 33,051 | Joint Genome Institute | 2016[12] | JGI Genome Portal[13] | |
Guillardia theta | Eukaryote Endosymbiosis | 87.2 Mb | 24, 840 | Dalhousie University | 2012[14] | The Greenhouse[15] |
Glaucophyte
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Cyanophora | Model
Organism |
70.2 Mb | 3,900 | Rutgers University | 2012[16] | Draft v1 | The Greenhouse[15]
Cyanophora Genome Project[17] | |
Cyanophora | Model
Organism |
99.94 Mb | 25,831 | Rutgers University | 2019[18] | Draft v2 | Cyanophora Genome Project[19] |
Green algae
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Asterochloris sp. Cgr/DA1pho | Photobiont | 55.8 Mb | 10,025 | Duke University | 2011[20] | JGI Genome Portal[13] | ||
Auxenochlorella protothecoides | Biofuels | 22.9 Mb | 7,039 | Tsinghua University | 2014[21] | The Greenhouse[15] | ||
Bathycoccus prasinos | Comparative analysis | 15.1 Mb | 7,900 | Joint Genome Institute | 2012[22] | JGI Genome Portal[13] | ||
Chlamydomonas reinhardtii CC-503
cw92 mt+ |
Model Organism | 111.1 Mb | 17,741 | Joint Genome Institute | 2017[23] | Phytozome[24]
The Greenhouse[15] | ||
Chlorella sorokiniana str. 1228 | Biofuels | 61.4 Mb | Los Alamos National Lab | 2018[25] | The Greenhouse[15] | |||
Chlorella sorokiniana UTEX 1230 | Biofuels | 58.5 Mb | Los Alamos National Lab | 2018[26] | The Greenhouse[15] | |||
Chlorella sorokiniana DOE1412 | Biofuels | 57.8 Mb | Los Alamos National Lab | 2018[27] | The Greenhouse[15] | |||
Chlorella variabilis NC64A | Biofuels | 46.2 Mb | 9,791 | 2010[28] | The Greenhouse[15] | |||
Chlorella vulgaris | Biofuels | 37.3 Mb | National Renewable | 2015[29] | The Greenhouse[15] | |||
Coccomyxa subellipsoidea
sp. C-169 |
Biofuels | 48.8 Mb | 9839 | Joint Genome Institute | 2012[30] | Phytozome[24]
The Greenhouse[15] | ||
Dunaliella salina
CCAP19/18 |
Halophile
Biofuels Beta-carotene and glycerol production |
343.7 Mb | 16,697 | Joint Genome Institute | 2017[31] | Phytozome[24] | ||
Eudorina sp. | Multicellular alga,
model organism |
~180 Mb | University of Tokyo | 2018[32] | ||||
Gonium pectorale | 148.81 Mb | Kansas State University | 2016[33] | |||||
Micromonas commoda NOUM17 (RCC288) | Marine phytoplankton | 21.0 Mb | 10,262 | Monterey Bay Aquarium Research Institute | 2013[34][35] | JGI Genome Portal[13] | ||
Micromonas
pusilla CCMP-1545 |
Marine | 21.9 Mb | 10,575 | Micromonas
Genome Consortium |
2009[36] | Phytozome[24]
The Greenhouse[15] | ||
Micromonas
RCC299/NOUM17 |
Marine | 20.9 Mb | 10,056 | Joint Genome | 2009[36] | Phytozome[24]
The Greenhouse[15] | ||
Monoraphidium | Biofuels | 69.7 Mb | 16,755 | Bielefeld | 2013[37] | The
Greenhouse[15] | ||
Ostreococcus
CCE9901 |
Small genome | 13.2 Mb | 7,603 | Joint Genome Institute | 2007[38] | Phytozome[24] | ||
Ostreococcus
tauri OTH95 |
Small genome | 12.9 Mb | 7,699 | CNRS | 2014[39] | The Greenhouse[15] | ||
Ostreococcus sp.
RCC809 |
Small genome | 13.3 Mb | 7,492 | Joint Genome | 2009[40] | JGI[41] | ||
Picochlorum
soloecismus DOE101 |
Biofuels | 15.2 Mb | 7,844 | Los Alamos | 2017[42] | The Greenhouse[15] | ||
Picochlorum
SENEW3 |
Biofuels | 13.5 Mb | 7,367 | Rutgers University | 2014[43] | The Greenhouse[15] | ||
Scenedesmus
obliquus DOE0152Z |
Biofuels | 210.3 Mb | Brooklyn College | 2017[44] | The Greenhouse[15] | |||
Symbiochloris reticulata (Metagenome) | Photobiont | 58.6 Mb | 12,720 | Joint Genome Institute | 2018[45] | JGI Genome Portal[13] | ||
Tetraselmis sp. | Biofuels | 228 Mb | Los Alamos | 2018[15] | The Greenhouse[15] | |||
Pedinomonas minor (Chlorophyta) | 55 Mb | New Phytologist | 2022[46] | |||||
Volvox carteri | Multicellular alga,
model organism |
131.2 Mb | 14,247 | Joint Genome | 2010[47] | Phytozome[24]
The Greenhouse[15] | ||
Yamagishiella unicocca | Multicellular alga,
model organism |
~140 Mb | University of Tokyo | 2018[32] |
Haptophyte
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Chrysochromulina
parva |
Biofuels | 65.8 Mb | Los Alamos National Laboratory | 2018[48] | The Greenhouse[15] | |||
Chrysochromulina tobinii CCMP291 | Model organism, Biofuels | 59.1 Mb | 16,765 | University of Washington | 2015[49] | The Greenhouse[15] | ||
Emiliania huxleyi | Coccolithophore | Alkenone production, Algal blooms | 167.7 Mb | 38,554 | Joint Genome Institute | 2013[50] | The Greenhouse[15] | |
Pavlovales sp. CCMP2436 | Psychrophile | 165.4 Mb | 26,034 | Joint Genome Institute | 2016[51] | JGI Genome Portal[13] |
Heterokonts/Stramenopiles
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Aureococcus | Harmful Algal
Bloom |
50.1 Mb | 11,522 | Joint Genome Institute | 2011[52] | The Greenhouse[15] | ||
Ectocarpus siliculosus | Brown algae | Model organism | 198.5 Mb | 16,269 | Genoscope | 2012[53] | The Greenhouse[15] | |
Fragilariopsis cylindrus CCMP1102 | Psychrophile | 61.1 Mb | 21,066 | University of East Anglia, Joint Genome Institute | 2017[54] | JGI Genome Portal[13] | ||
Nannochloropsis
gaditana |
Biofuels | 28.5 Mb | 10,486 | University of Padua | 2014[55] | The Greenhouse[15] | ||
Nannochloropsis
oceanica |
Biofuels | 31.5 Mb | Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology | 2016[56] | The Greenhouse[15] | |||
Nannochloropsis Salina CCMP1766 | Biofuels | 24.4 Mb | Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology | 2016[57] | The Greenhouse[15] | |||
Ochromonadaceae sp. CCMP2298 | Psychrophile | 61.1 Mb | 20,195 | Joint Genome Institute | 2016[58] | JGI Genome Portal[13] | ||
Pelagophyceae sp. CCMP2097 | Psychrophile | 85.2 Mb | 19,402 | Joint Genome Institute | 2016[59] | JGI Genome Portal[13] | ||
Phaeodactylum tricornutum | Model organism | 27.5 Mb | 10,408 | Diatom Consortium | 2008[60] | The Greenhouse[15] | ||
Pseudo-nitzschia multiseries CLN-47 | 218.7 Mb | 19,703 | Joint Genome Institute | 2011[61] | JGI Genome Portal[13] | |||
Saccharina japonica | Brown algae | Commercial crop | 543.4 Mb | Chinese Academy of Sciences, Beijing Institutes of Life Science | 2015[62] | The Greenhouse[15] | ||
Thalassiosira oceanica CCMP 1005 | Model organism | 92.2 Mb | 34,642 | The Future Ocean | 2012[63] | The Greenhouse[15] | ||
Thalassiosira pseudonana | model organism | 32.4 Mb | 11,673 | Diatom Consortium | 2009[64] | The Greenhouse[15] |
Red algae (Rhodophyte)
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Chondrus crispus | Carrageenan production, model organism | 105 Mb | 9,606 | Genoscope | 2013 | The Greenhouse[15] | ||
Cyanidioschyzon
merolae 10D |
Model
organism |
16.5 Mb | 4,775 | National Institute
of Genetics, Japan |
2007[65] | The Greenhouse[15] | ||
Galdieria sulphuraria | Extremophile | 12.1 Mb | The University of York | 2016[66] | The Greenhouse[15] | |||
Gracilariopsis chorda | Mesophile | 92.1 Mb | 10,806 | Sungkyunkwan University | 2018[67] | |||
Porphyridium purpureum | Mesophile | 19.7 Mb | 8,355 | Rutgers University | 2013[68] | |||
Porphyra umbilicalis | Mariculture | 87.6 Mb | 13,360 | University of Maine | 2017[69] | Phytozome[24] | ||
Pyropia yezoensis | Mariculture | 43.5 Mb | 10,327 | National Research Institute of Fisheries Science | 2013[70] |
Rhizaria
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Bigelowiella natans | Model organism | 94. Mb | 21,708 | Dalhousie University | 2012[14] | The Greenhouse[15] |
References
- Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. (2013). "Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure". Current Biology. 25 (15): 1399–1408. doi:10.1016/j.cub.2013.05.062. PMID 23850284.
- "OIST Marine Genomics". marinegenomics.oist.jp. Retrieved 2018-08-22.
- Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. (2018). "Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis". Communications Biology. 1: 95. doi:10.1038/s42003-018-0098-3. PMC 6123633. PMID 30271976.
- "ReFuGe 2020 Data Site". refuge2020.reefgenomics.org. Retrieved 2018-08-22.
- Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T, et al. (2018). "Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes". BMC Genomics. 19 (1): 458. doi:10.1186/s12864-018-4857-9. PMC 6001144. PMID 29898658.
- Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, et al. (2015). "The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis". Science. 350 (6261): 691–4. Bibcode:2015Sci...350..691L. doi:10.1126/science.aad0408. PMID 26542574.
- "S. kawagutii data site". web.malab.cn/symka_new. Retrieved 2018-08-22.
- Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, et al. (2020). "Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions". BMC Biology. 18 (1): 56. doi:10.1186/s12915-020-00782-8. PMC 7245778. PMID 32448240.
- Stephens, Timothy; Ragan, Mark; Bhattacharya, Debashish; Chan, Cheong Xin (2020). "Polarella data site". doi:10.14264/uql.2020.222. S2CID 216542238.
{{cite journal}}
: Cite journal requires|journal=
(help) - Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, et al. (2016). "Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle". Scientific Reports. 6: 39734. Bibcode:2016NatSR...639734A. doi:10.1038/srep39734. PMC 5177918. PMID 28004835.
- "Reef Genomics Data Site". smic.reefgenomics.org. Retrieved 2018-08-22.
- "Info - Cryptophyceae sp. CCMP2293 v1.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
- "Algae". genome.jgi.doe.gov. Retrieved 2018-07-31.
- Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. (December 2012). "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs". Nature. 492 (7427): 59–65. Bibcode:2012Natur.492...59C. doi:10.1038/nature11681. PMID 23201678.
- "Home | Greenhouse". greenhouse.lanl.gov. Retrieved 2018-07-11.
- Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber AP, et al. (February 2012). "Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants". Science. 335 (6070): 843–7. Bibcode:2012Sci...335..843P. doi:10.1126/science.1213561. PMID 22344442. S2CID 17190180.
- "Cyanophora Genome Project". cyanophora.rutgers.edu. Retrieved 2018-07-12.
- Price DC, Goodenough UW, Roth R, Lee JH, Kariyawasam T, Mutwil M, et al. (August 2019). "Analysis of an improved Cyanophora paradoxa genome assembly". DNA Research. 26 (4): 289–299. doi:10.1093/dnares/dsz009. PMC 6704402. PMID 31098614.
- "Cyanophora Genome v2 Project". cyanophora.rutgers.edu/cyanophora_v2018. Retrieved 2019-08-01.
- "Info - Asterochloris sp. Cgr/DA1pho v2.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
- Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, Wu Q (July 2014). "Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes". BMC Genomics. 15 (1): 582. doi:10.1186/1471-2164-15-582. PMC 4111847. PMID 25012212.
- Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S, Grimsley N, et al. (August 2012). "Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage". Genome Biology. 13 (8): R74. doi:10.1186/gb-2012-13-8-r74. PMC 3491373. PMID 22925495.
- "Phytozome". phytozome.jgi.doe.gov. Retrieved 2018-07-12.
- "Phytozome". phytozome.jgi.doe.gov. Retrieved 2018-07-12.
- "CSI_1228 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
- "ASM313072v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
- "ASM311615v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
- Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, et al. (September 2010). "The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex". The Plant Cell. 22 (9): 2943–55. doi:10.1105/tpc.110.076406. PMC 2965543. PMID 20852019.
- "ASM102112v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
- "Coccomyxa subellipsoidae v2.0 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
- "Dsal_v1.0 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
- Hamaji, Takashi; Kawai-Toyooka, Hiroko; Uchimura, Haruka; Suzuki, Masahiro; Noguchi, Hideki; Minakuchi, Yohei; Toyoda, Atsushi; Fujiyama, Asao; Miyagishima, Shin-ya (2018-03-08). "Anisogamy evolved with a reduced sex-determining region in volvocine green algae". Communications Biology. 1 (1): 17. doi:10.1038/s42003-018-0019-5. ISSN 2399-3642. PMC 6123790. PMID 30271904.
- "ASM158458v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-04-06.
- "Info - Micromonas commoda NOUM17 (RCC 299)". genome.jgi.doe.gov. Retrieved 2018-07-31.
- Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL, et al. (April 2009). "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science. 324 (5924): 268–72. Bibcode:2009Sci...324..268W. doi:10.1126/science.1167222. PMID 19359590. S2CID 206516961.
- Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL, et al. (April 2009). "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science. 324 (5924): 268–72. Bibcode:2009Sci...324..268W. doi:10.1126/science.1167222. PMID 19359590. S2CID 206516961.
- Bogen C, Al-Dilaimi A, Albersmeier A, Wichmann J, Grundmann M, Rupp O, et al. (December 2013). "Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production". BMC Genomics. 14: 926. doi:10.1186/1471-2164-14-926. PMC 3890519. PMID 24373495.
- Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, et al. (May 2007). "The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation". Proceedings of the National Academy of Sciences of the United States of America. 104 (18): 7705–10. Bibcode:2007PNAS..104.7705P. doi:10.1073/pnas.0611046104. PMC 1863510. PMID 17460045.
- Blanc-Mathieu R, Verhelst B, Derelle E, Rombauts S, Bouget FY, Carré I, et al. (December 2014). "An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies". BMC Genomics. 15 (1): 1103. doi:10.1186/1471-2164-15-1103. PMC 4378021. PMID 25494611.
- "Info - Ostreococcus sp. RCC809". genome.jgi.doe.gov. Retrieved 2018-07-16.
- "Home - Ostreococcus sp. RCC809". genome.jgi.doe.gov. Retrieved 2018-07-26.
- Gonzalez-Esquer CR, Twary SN, Hovde BT, Starkenburg SR (January 2018). "Picochlorum soloecismus". Genome Announcements. 6 (4): e01498–17. doi:10.1128/genomeA.01498-17. PMC 5786678. PMID 29371352.
- Foflonker F, Price DC, Qiu H, Palenik B, Wang S, Bhattacharya D (February 2015). "Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions". Environmental Microbiology. 17 (2): 412–26. doi:10.1111/1462-2920.12541. PMID 24965277. S2CID 23615707.
- Starkenburg SR, Polle JE, Hovde B, Daligault HE, Davenport KW, Huang A, et al. (August 2017). "Scenedesmus obliquus Strain DOE0152z". Genome Announcements. 5 (32). doi:10.1128/genomeA.00617-17. PMC 5552973. PMID 28798164.
- "Info - Symbiochloris reticulata Africa extracted metagenome v1.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
- Xu, Yan; Wang, Hongli; Sahu, Sunil Kumar; Li, Linzhou; Liang, Hongping; Günther, Gerd; Wong, Gane Ka‐Shu; Melkonian, Barbara; Melkonian, Michael; Liu, Huan; Wang, Sibo (August 2022). "Chromosome‐level genome of Pedinomonas minor (Chlorophyta) unveils adaptations to abiotic stress in a rapidly fluctuating environment". New Phytologist. 235 (4): 1409–1425. doi:10.1111/nph.18220. ISSN 0028-646X. PMID 35560066. S2CID 248778022.
- Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, et al. (July 2010). "Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri". Science. 329 (5988): 223–6. Bibcode:2010Sci...329..223P. doi:10.1126/science.1188800. PMC 2993248. PMID 20616280.
- "ASM288719v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-11.
- "Ctobinv2 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-27.
- Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, et al. (July 2013). "Pan genome of the phytoplankton Emiliania underpins its global distribution". Nature. 499 (7457): 209–13. Bibcode:2013Natur.499..209.. doi:10.1038/nature12221. PMID 23760476.
- "Info - Pavlovales sp. CCMP2436 v1.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
- Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, et al. (March 2011). "Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics". Proceedings of the National Academy of Sciences of the United States of America. 108 (11): 4352–7. Bibcode:2011PNAS..108.4352G. doi:10.1073/pnas.1016106108. PMC 3060233. PMID 21368207.
- "ASM31002v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-11.
- Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, et al. (January 2017). "Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus". Nature. 541 (7638): 536–540. Bibcode:2017Natur.541..536M. doi:10.1038/nature20803. hdl:10754/622831. PMID 28092920.
- Corteggiani Carpinelli E, Telatin A, Vitulo N, Forcato C, D'Angelo M, Schiavon R, et al. (February 2014). "Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion". Molecular Plant. 7 (2): 323–35. doi:10.1093/mp/sst120. PMID 23966634.
- "ASM187094v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-26.
- "ASM161424v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-26.
- "Info - Ochromonadaceae sp. CCMP2298 v1.0". genome.jgi.doe.gov. Retrieved 2018-08-02.
- "Info - Pelagophyceae sp. CCMP2097 v1.0". genome.jgi.doe.gov. Retrieved 2018-08-02.
- "Phaeodactylum tricornutum (ID 418) - Genome - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-26.
- "Info - Pseudo-nitzschia multiseries CLN-47". genome.jgi.doe.gov. Retrieved 2018-08-02.
- "SJ6.1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-27.
- Jiang Z, Liu S, Wu Y, Jiang X, Zhou K (2017). "China's mammal diversity (2nd edition)". Biodiversity Science. 25 (8): 886–895. doi:10.17520/biods.2017098.
- "ASM14940v2 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-27.
- Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, et al. (July 2007). "A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae". BMC Biology. 5: 28. doi:10.1186/1741-7007-5-28. PMC 1955436. PMID 17623057.
- "ASM170485v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-30.
- Lee J, Yang EC, Graf L, Yang JH, Qiu H, Zelzion U, et al. (2018-04-23). "Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta". Molecular Biology and Evolution. 35 (8): 1869–1886. doi:10.1093/molbev/msy081. PMID 29688518.
- Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, et al. (2013-06-17). "Genome of the red alga Porphyridium purpureum". Nature Communications. 4 (1): 1941. Bibcode:2013NatCo...4.1941B. doi:10.1038/ncomms2931. PMC 3709513. PMID 23770768.
- Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, et al. (August 2017). "Porphyra umbilicalis (Bangiophyceae, Rhodophyta)". Proceedings of the National Academy of Sciences of the United States of America. 114 (31): E6361–E6370. Bibcode:2017PNAS..114E6361B. doi:10.1073/pnas.1703088114. PMC 5547612. PMID 28716924.
- Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, et al. (2013-03-11). "The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis)". PLOS ONE. 8 (3): e57122. Bibcode:2013PLoSO...857122N. doi:10.1371/journal.pone.0057122. PMC 3594237. PMID 23536760.