Lévy's stochastic area
In probability theory, Lévy's stochastic area is a stochastic process that describes the enclosed area of a trajectory of a two-dimensional Brownian motion and its chord. The process was introduced by Paul Lévy in 1940,[1] and in 1950[2] he computed the characteristic function and conditional characteristic function.
The process has many unexpected connections to other objects in mathematics such as the soliton solutions of the Korteweg–De Vries equation[3] and the Riemann zeta function.[4] In the Malliavin calculus, the process can be used to construct a process that is smooth in the sense of Malliavin but that has no continuous modification with respect to the Banach norm.[5]
Lévy's stochastic area
Let be a two-dimensional Brownian motion in then Lévy's stochastic area is the process
where the Itō integral is used.[2]
Define the 1-Form then is the stochastic integral of along the curve
Further topics
References
- Lévy, Paul M. (1940). "Le Mouvement Brownien Plan". American Journal of Mathematics. 62 (1): 487–550. doi:10.2307/2371467.
- Lévy, Paul M. (1950). "Wiener's random function, and other Laplacian random functions". Proc. 2nd Berkeley Symp. Math. Stat. Proba. Univ. California. II: 171–186.
- Ikeda, Nobuyuki; Taniguchi, Setsuo (2010). "The Itô–Nisio theorem, quadratic Wiener functionals, and 1-solitons". Stoch. Proc. Appl. 120: 605–621.
- Biane, Philippe; Pitman, Jim; Yor, Marc (2001). "Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions". Bull. Amer. Math. Soc. (N.S.). 38 (4): 435–465.
- Ikeda, Nobuyuki; Watanabe, Shinzō (1984). "An Introduction to Malliavin's Calculus". North-Holland Mathematical Library. Elsevier. 32: 1–52. doi:10.1016/S0924-6509(08)70387-8. ISBN 0-444-87588-3.
- Ikeda, Nobuyuki; Taniguchi, Setsuo (2011). "Euler polynomials, Bernoulli polynomials, and Lévyʼs stochastic area formula". Bulletin des Sciences Mathématiques. 135 (6–7): 685. doi:10.1016/j.bulsci.2011.07.009.
- Yor, Marc (1980). Azéma, J.; Yor, M. (eds.). Remarques sur une formule de paul levy. Séminaire de Probabilités XIV 1978/79. Lecture Notes in Mathematics. Vol. 784. Berlin, Heidelberg: Springer. doi:10.1007/BFb0089501.
- Helmes, Kurt; Schwane, A (1983). "Levy's stochastic area formula in higher dimensions". Journal of Functional Analysis. 54 (2): 177–192. doi:10.1016/0022-1236(83)90053-8.