Kaniadakis logistic distribution

The Kaniadakis Logistic distribution (also known as κ-Logisticdistribution) is a generalized version of the Logistic distribution associated with the Kaniadakis statistics. It is one example of a Kaniadakis distribution. The κ-Logistic probability distribution describes the population kinetics behavior of bosonic () or fermionic () character.[1]

κ-Logistic distribution
Probability density function
Plot of the κ-Logistic distribution for typical κ-values and . The case corresponds to the ordinary Logistic distribution.
Cumulative distribution function
Plots of the cumulative κ-Logistic distribution for typical κ-values and . The case corresponds to the ordinary Logistic case.
Parameters
shape (real)
rate (real)
Support
PDF
CDF

Definitions

Probability density function

The Kaniadakis κ-Logistic distribution is a four-parameter family of continuous statistical distributions, which is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics. This distribution has the following probability density function:[1]

valid for , where is the entropic index associated with the Kaniadakis entropy, is the rate parameter, , and is the shape parameter.

The Logistic distribution is recovered as

Cumulative distribution function

The cumulative distribution function of κ-Logistic is given by

valid for . The cumulative Logistic distribution is recovered in the classical limit .

Survival and hazard functions

The survival distribution function of κ-Logistic distribution is given by

valid for . The survival Logistic distribution is recovered in the classical limit .

The hazard function associated with the κ-Logistic distribution is obtained by the solution of the following evolution equation:

with , where is the hazard function:

The cumulative Kaniadakis κ-Logistic distribution is related to the hazard function by the following expression:

where is the cumulative hazard function. The cumulative hazard function of the Logistic distribution is recovered in the classical limit .

  • The survival function of the κ-Logistic distribution represents the κ-deformation of the Fermi-Dirac function, and becomes a Fermi-Dirac distribution in the classical limit .[1]
  • The κ-Logistic distribution is a generalization of the κ-Weibull distribution when .
  • A κ-Logistic distribution corresponds to a Half-Logistic distribution when , and .
  • The ordinary Logistic distribution is a particular case of a κ-Logistic distribution, when .

Applications

The κ-Logistic distribution has been applied in several areas, such as:

  • In quantum statistics, the survival function of the κ-Logistic distribution represents the most general expression of the Fermi-Dirac function, reducing to the Fermi-Dirac distribution in the limit .[2][3][4]

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.