Hans Peter Schlickewei
Hans Peter Schlickewei (born 1947) is a German mathematician, specializing in number theory and, in particular, the theory of transcendental numbers.
![](../I/Schlickewei.jpg.webp)
Hans Peter Schlickewei, Oberwolfach 2007
Schlickewei received his doctorate in 1975 at the University of Freiburg under the supervision of Theodor Schneider.[1] Schlickewei is a professor at the University of Marburg.[2]
He proved in 1976 the p-adic generalization of the subspace theorem of Wolfgang M. Schmidt.[3] Schlickewei's theorem implies the Thue-Siegel-Roth theorem, whose p-adic analogue was already proved in 1958 by David Ridout.[4]
In 1998, Schlickewei was an invited speaker with talk The Subspace Theorem and Applications at the International Congress of Mathematicians in Berlin.[5]
Selected publications
- Schlickewei, H. P. (1976). "Die p-adische Verallgemeinerung des Satzes von Thue-Siegel-Roth-Schmidt". J. Reine Angew. Math. 1976 (288): 86–105. doi:10.1515/crll.1976.288.86. S2CID 115523021.
- Schinzel, A.; Schlickewei, H.; Schmidt, W. (1980). "Small solutions of quadratic congruences and small fractional parts of quadratic forms". Acta Arithmetica. 37 (1): 241–248. doi:10.4064/aa-37-1-241-248.
- Schlickewei, H. P. (1990). "S-unit equations over number fields". Invent. Math. 102: 95–107. Bibcode:1990InMat.102...95S. doi:10.1007/BF01233421. S2CID 120614908.
- Van Der Poorten, A. J.; Schlickewei, H. P. (1991). "Additive relations in fields". Journal of the Australian Mathematical Society, Series A. 51: 154–170. doi:10.1017/S144678870003336X.
- Schlickewei, H. P. (1993). "Multiplicities of algebraic linear recurrrences". Acta Mathematica. 170 (2): 151–180. doi:10.1007/BF02392784.
- Schlickewei, H. P. (1996). "Multiplicities of recurrence sequences". Acta Mathematica. 176 (2): 171–243. doi:10.1007/BF02551582.
- Schlickewei, H. P. (1997). "The multiplicity of binary recurrences". Invent. Math. 129 (11): 11–36. Bibcode:1997InMat.129...11S. doi:10.1007/s002220050156. S2CID 121677668.
- Schlickewei, H. P.; Schmidt, W. P. (2000). "The number of solutions of polynomial-exponential equations". Compositio Math. 120 (2): 193–225. doi:10.1023/A:1001719425893. S2CID 123405472.
- Evertse, J.-H.; Schlickewei, H. P.; Schmidt, W. M. (2002). "Linear Equations in Variables which Lie in a Multiplicative Group". The Annals of Mathematics. 155 (3): 807. arXiv:math/0409604. doi:10.2307/3062133. JSTOR 3062133. S2CID 5727031.
- Approximation of algebraic numbers, pp. 107–170 in: D. Masser, Yu. V. Nesterenko, W. Schmidt, M. Waldschmidt (eds.): Diophantine Approximation, Lectures CIME Summer School 2000, Springer 2003
References
- Hans Peter Schlickewei at the Mathematics Genealogy Project
- "Prof. Dr. Hans Peter Schlickewei". Philipps-Universität Marburg.
- Schlickewei, Hans Peter (1977). "On norm form equations". J. Number Theory. 9 (3): 370–380. doi:10.1016/0022-314X(77)90072-5. MR 0444562.
- Ridout, David (1958). "The p-adic generalization of the Thue-Siegel-Roth theorem". Mathematika. 5 (1): 40–48. doi:10.1112/S0025579300001339.
- Schlickewei, Hans Peter (1998). "The subspace theorem and applications". In: Proceedings of the International Congress of Mathematicians, 1998, Berlin. Vol. 2. pp. 197–205.
External links
- "003 On Polynomial Exponential Equations by H. P. Schlickewei, Philipps-University Marburg". YouTube. matsciencechannel. 26 December 2013.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.