Glycoside hydrolase family 65
In molecular biology, glycoside hydrolase family 65 is a family of glycoside hydrolases.
Glycosyl hydrolase family 65, N-terminal domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Glyco_hydro_65N | ||||||||
Pfam | PF03636 | ||||||||
Pfam clan | CL0103 | ||||||||
InterPro | IPR005196 | ||||||||
SCOP2 | 1h54 / SCOPe / SUPFAM | ||||||||
CAZy | GH65 | ||||||||
|
Glycosyl hydrolase family 65 central catalytic domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Glyco_hydro_65m | ||||||||
Pfam | PF03632 | ||||||||
Pfam clan | CL0059 | ||||||||
InterPro | IPR005195 | ||||||||
SCOP2 | 1h54 / SCOPe / SUPFAM | ||||||||
CAZy | GH65 | ||||||||
|
Glycosyl hydrolase family 65, C-terminal domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Glyco_hydro_65C | ||||||||
Pfam | PF03633 | ||||||||
InterPro | IPR005194 | ||||||||
SCOP2 | 1h54 / SCOPe / SUPFAM | ||||||||
CAZy | GH65 | ||||||||
|
Glycoside hydrolases EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families.[1][2][3] This classification is available on the CAZy web site,[4][5] and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes.[6][7]
This family of glycosyl hydrolases (CAZY GH_65) includes vacuolar acid trehalase and maltose phosphorylases. Maltose phosphorylase (MP) is a dimeric enzyme that catalyzes the conversion of maltose and inorganic phosphate into beta-D-glucose-1-phosphate and glucose.
It consists of three structural domains. The C-terminal domain forms a two layered jelly roll motif. This domain is situated at the base of the catalytic domain, however its function remains unknown.[8] The central domain is the catalytic domain, which binds a phosphate ion that is proximal the highly conserved Glu. The arrangement of the phosphate and the glutamate is thought to cause nucleophilic attack on the anomeric carbon atom.[8] The catalytic domain also forms the majority of the dimerisation interface. The N-terminal domain is believed to be essential for catalytic activity[8] although its precise function remains unknown.
References
- Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (July 1995). "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proceedings of the National Academy of Sciences of the United States of America. 92 (15): 7090–4. Bibcode:1995PNAS...92.7090H. doi:10.1073/pnas.92.15.7090. PMC 41477. PMID 7624375.
- Davies G, Henrissat B (September 1995). "Structures and mechanisms of glycosyl hydrolases". Structure. 3 (9): 853–9. doi:10.1016/S0969-2126(01)00220-9. PMID 8535779.
- Henrissat B, Bairoch A (June 1996). "Updating the sequence-based classification of glycosyl hydrolases". The Biochemical Journal. 316 (Pt 2): 695–6. doi:10.1042/bj3160695. PMC 1217404. PMID 8687420.
- "Home". CAZy.org. Retrieved 2018-03-06.
- Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (January 2014). "The carbohydrate-active enzymes database (CAZy) in 2013". Nucleic Acids Research. 42 (Database issue): D490–5. doi:10.1093/nar/gkt1178. PMC 3965031. PMID 24270786.
- "Glycoside Hydrolase Family 65". CAZypedia.org. Retrieved 2018-03-06.
- CAZypedia Consortium (December 2018). "Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes" (PDF). Glycobiology. 28 (1): 3–8. doi:10.1093/glycob/cwx089. PMID 29040563.
- van Tilbeurgh H, Egloff MP, Uppenberg J, Haalck L (2001). "Crystal structure of maltose phosphorylase from Lactobacillus brevis: unexpected evolutionary relationship with glucoamylases". Structure. 9 (8): 689–697. doi:10.1016/S0969-2126(01)00626-8. PMID 11587643.