G protein-coupled receptor kinase 7
G-protein-coupled receptor kinase 7 (EC 2.7.11.14, GRK7, cone opsin kinase, iodopsin kinase) is a serine/threonine-specific protein kinase involved in phototransduction.[1][2][3] This enzyme catalyses the phosphorylation of cone (color) photopsins in retinal cones during high acuity color vision primarily in the fovea.
G protein-coupled receptor kinase 7 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | GRK7 | ||||||
Alt. symbols | GPRK7 | ||||||
NCBI gene | 131890 | ||||||
HGNC | 17031 | ||||||
OMIM | 606987 | ||||||
RefSeq | NM_139209 | ||||||
UniProt | Q8WTQ7 | ||||||
Other data | |||||||
EC number | 2.7.11.14 | ||||||
Locus | Chr. 3 q24 | ||||||
|
More on GRK7
GRK7 is a member of the family of G protein-coupled receptor kinases, and is officially named G protein-coupled receptor kinase 7. GRK7 is found primarily in mammalian retinal cone cells, where it phosphorylates light-activated photopsins, members of the family of G protein-coupled receptors that recognize light of various wavelengths (red, green, blue).[3] Phosphorylated, light-activated photopsin binds to the cone arrestin protein arrestin-4 to terminate the light-activated signaling cascade.[3] The related GRK1, also known as rhodopsin kinase, serves a similar function in retinal rod cells subserving dim light black-and-white peripheral vision outside the fovea.[4][5] The post-translational modification of GRK7 by geranylgeranylation and α-carboxyl methylation is important for regulating the ability of the enzyme to recognize color opsins in cone outer segment disk membranes.[2]
Arrestin-1 bound to rhodopsin in retinal rods prevents rhodopsin activation of the transducin protein to turn off photo-transduction completely.[6] While cone visual transduction is much less well characterized, it is expected that arrestin-4 bound to GRK7-phosphorylated color photopsin prevents opsin activation of the transducin protein to turn off photo-transduction completely.
References
- Weiss ER, Raman D, Shirakawa S, Ducceschi MH, Bertram PT, Wong F, Kraft TW, Osawa S (1998). "The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas". Mol Vis. 4: 27. PMID 9852166.
- Chen CK, Zhang K, Church-Kopish J, Huang W, Zhang H, Chen YJ, Frederick JM, Baehr W (December 2001). "Characterization of human GRK7 as a potential cone opsin kinase". Molecular Vision. 7: 305–13. PMID 11754336.
- Osawa S, Weiss ER (2012). "A tale of two kinases in rods and cones". Adv Exp Med Biol. Advances in Experimental Medicine and Biology. 723: 821–827. doi:10.1007/978-1-4614-0631-0_105. ISBN 978-1-4614-0630-3. PMC 3632502. PMID 22183412.
- Shichi H, Somers RL (October 1978). "Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase". The Journal of Biological Chemistry. 253 (19): 7040–6. doi:10.1016/S0021-9258(17)38026-2. PMID 690139.
- Lorenz W, Inglese J, Palczewski K, Onorato JJ, Caron MG, Lefkowitz RJ (October 1991). "The receptor kinase family: primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase". Proceedings of the National Academy of Sciences of the United States of America. 88 (19): 8715–9. Bibcode:1991PNAS...88.8715L. doi:10.1073/pnas.88.19.8715. PMC 52580. PMID 1656454.
- Sakurai K, Chen J, Khani SC, Kefalov VJ (April 2015). "Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase". The Journal of Biological Chemistry. 290 (14): 9239–50. doi:10.1074/jbc.M115.639591. PMC 4423708. PMID 25673692.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.