Faxén integral
In mathematics, the Faxén integral (also named Faxén function) is the following integral[1]
The integral is named after the Swedish physicist Olov Hilding Faxén, who published it in 1921 in his PhD thesis.[2]
n-dimensional Faxén integral
More generally one defines the -dimensional Faxén integral as[3]
with
- and
for and
The parameter is only for convenience in calculations.
Properties
Let denote the Gamma function, then
For one has the following relationship to the Scorer function
References
- Olver, Frank W. J. (1997). Asymptotics and Special Functions. A K Peters/CRC Press. p. 332. doi:10.1201/9781439864548.
- Faxén, Hilding (1921). Einwirkung der Gefässwände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit (PhD). Uppsala University.
- Paris, Richard Bruce (2010). "Asymptotic expansion of n-dimensional Faxén-type integrals". European Journal of Pure and Applied Mathematics. A K Peters/CRC Press. 3 (6): 1006–1031.
- Kaminski, David; Paris, Richard B. (1997). "Asymptotics via iterated Mellin–Barnes integrals: Application to the generalised Faxén integral". Methods and applications of analysis. 4: 311–325.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.