7-demicube

In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube (hepteract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

Demihepteract
(7-demicube)

Petrie polygon projection
Type Uniform 7-polytope
Family demihypercube
Coxeter symbol 141
Schläfli symbol {3,34,1} = h{4,35}
s{21,1,1,1,1,1}
Coxeter diagrams =






6-faces7814 {31,3,1}
64 {35}
5-faces53284 {31,2,1}
448 {34}
4-faces1624280 {31,1,1}
1344 {33}
Cells2800560 {31,0,1}
2240 {3,3}
Faces2240{3}
Edges672
Vertices64
Vertex figure Rectified 6-simplex
Symmetry group D7, [34,1,1] = [1+,4,35]
[26]+
Dual ?
Properties convex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM7 for a 7-dimensional half measure polytope.

Coxeter named this polytope as 141 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol or {3,34,1}.

Cartesian coordinates

Cartesian coordinates for the vertices of a demihepteract centered at the origin are alternate halves of the hepteract:

(±1,±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.

Images

orthographic projections
Coxeter
plane
B7 D7 D6
Graph
Dihedral
symmetry
[14/2] [12] [10]
Coxeter plane D5 D4 D3
Graph
Dihedral
symmetry
[8] [6] [4]
Coxeter
plane
A5 A3
Graph
Dihedral
symmetry
[6] [4]

As a configuration

This configuration matrix represents the 7-demicube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-demicube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]

The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.[3]

D7k-facefkf0f1f2f3f4f5f6k-figuresnotes
A6( ) f0 64211053514035105214277041D7/A6 = 64*7!/7! = 64
A4A1A1{ } f1 2672105201020101052{ }×{3,3,3}D7/A4A1A1 = 64*7!/5!/2/2 = 672
A3A2100 f2 33224014466441{3,3}v( )D7/A3A2 = 64*7!/4!/3! = 2240
A3A3101 f3 464560*406040{3,3}D7/A3A3 = 64*7!/4!/4! = 560
A3A2110 464*2240133331{3}v( )D7/A3A2 = 64*7!/4!/3! = 2240
D4A2111 f4 8243288280*3030{3}D7/D4A2 = 64*7!/8/4!/2 = 280
A4A1120 5101005*13441221{ }v( )D7/A4A1 = 64*7!/5!/2 = 1344
D5A1121 f5 16801604080101684*20{ }D7/D5A1 = 64*7!/16/5!/2 = 84
A5130 6152001506*44811D7/A5 = 64*7!/6! = 448
D6131 f6 3224064016048060192123214*( )D7/D6 = 64*7!/32/6! = 14
A6140 7213503502107*64D7/A6 = 64*7!/7! = 64

There are 95 uniform polytopes with D6 symmetry, 63 are shared by the B6 symmetry, and 32 are unique:

D7 polytopes

t0(141)

t0,1(141)

t0,2(141)

t0,3(141)

t0,4(141)

t0,5(141)

t0,1,2(141)

t0,1,3(141)

t0,1,4(141)

t0,1,5(141)

t0,2,3(141)

t0,2,4(141)

t0,2,5(141)

t0,3,4(141)

t0,3,5(141)

t0,4,5(141)

t0,1,2,3(141)

t0,1,2,4(141)

t0,1,2,5(141)

t0,1,3,4(141)

t0,1,3,5(141)

t0,1,4,5(141)

t0,2,3,4(141)

t0,2,3,5(141)

t0,2,4,5(141)

t0,3,4,5(141)

t0,1,2,3,4(141)

t0,1,2,3,5(141)

t0,1,2,4,5(141)

t0,1,3,4,5(141)

t0,2,3,4,5(141)

t0,1,2,3,4,5(141)

References

  1. Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. Coxeter, Complex Regular Polytopes, p.117
  3. Klitzing, Richard. "x3o3o *b3o3o3o - hax".
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Klitzing, Richard. "7D uniform polytopes (polyexa) x3o3o *b3o3o3o3o - hesa".
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.