CHCHD2
Coiled-coil-helix-coiled-coil-helix domain containing 2 is a protein that in humans is encoded by the CHCHD2 gene. [5]
CHCHD2 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | CHCHD2, C7orf17, MNRR1, NS2TP, PARK22, coiled-coil-helix-coiled-coil-helix domain containing 2, MIX17B | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 616244 MGI: 1261428 HomoloGene: 49449 GeneCards: CHCHD2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Function
The protein encoded by this gene belongs to a class of eukaryotic CX(9)C proteins characterized by four cysteine residues spaced ten amino acids apart from one another. These residues form disulfide linkages that define a CHCH fold. In response to stress, the protein translocates from the mitochondrial intermembrane space to the nucleus where it binds to a highly conserved 13 nucleotide oxygen responsive element in the promoter of cytochrome oxidase 4I2, a subunit of the terminal enzyme of the electron transport chain.
In concert with recombination signal sequence-binding protein J, binding of this protein activates the oxygen responsive element at four percent oxygen. In addition, it has been shown that this protein is a negative regulator of mitochondria-mediated apoptosis. In response to apoptotic stimuli, mitochondrial levels of this protein decrease, allowing BCL2-associated X protein to oligomerize and activate the Caspase Cascade. Pseudogenes of this gene are found on multiple chromosomes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2016].
References
- GRCh38: Ensembl release 89: ENSG00000106153 - Ensembl, May 2017
- GRCm38: Ensembl release 89: ENSMUSG00000070493 - Ensembl, May 2017
- "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- "Entrez Gene: Coiled-coil-helix-coiled-coil-helix domain containing 2". Retrieved 2018-02-21.
Further reading
- Baughman JM, Nilsson R, Gohil VM, Arlow DH, Gauhar Z, Mootha VK (August 2009). "A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis". PLOS Genet. 5 (8): e1000590. doi:10.1371/journal.pgen.1000590. PMC 2721412. PMID 19680543.
- Hendrickson SL, Lautenberger JA, Chinn LW, Malasky M, Sezgin E, Kingsley LA, Goedert JJ, Kirk GD, Gomperts ED, Buchbinder SP, Troyer JL, O'Brien SJ (September 2010). "Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression". PLOS ONE. 5 (9): e12862. Bibcode:2010PLoSO...512862H. doi:10.1371/journal.pone.0012862. PMC 2943476. PMID 20877624.
- Aras S, Bai M, Lee I, Springett R, Hüttemann M, Grossman LI (January 2015). "MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism". Mitochondrion. 20: 43–51. doi:10.1016/j.mito.2014.10.003. PMID 25315652.
- Liu Y, Clegg HV, Leslie PL, Di J, Tollini LA, He Y, Kim TH, Jin A, Graves LM, Zheng J, Zhang Y (June 2015). "CHCHD2 inhibits apoptosis by interacting with Bcl-x L to regulate Bax activation". Cell Death Differ. 22 (6): 1035–46. doi:10.1038/cdd.2014.194. PMC 4423185. PMID 25476776.
- Song R, Yang B, Gao X, Zhang J, Sun L, Wang P, Meng Y, Wang Q, Liu S, Cheng J (June 2015). "Cyclic adenosine monophosphate response element-binding protein transcriptionally regulates CHCHD2 associated with the molecular pathogenesis of hepatocellular carcinoma". Mol Med Rep. 11 (6): 4053–62. doi:10.3892/mmr.2015.3256. PMC 4394931. PMID 25625293.
- Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S, Li Y, Ogaki K, Ando M, Yoshino H, Tomiyama H, Nishioka K, Hasegawa K, Saiki H, Satake W, Mogushi K, Sasaki R, Kokubo Y, Kuzuhara S, Toda T, Mizuno Y, Uchiyama Y, Ohno K, Hattori N (March 2015). "CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study". Lancet Neurol. 14 (3): 274–82. doi:10.1016/S1474-4422(14)70266-2. PMID 25662902. S2CID 35183690.
- Wei Y, Vellanki RN, Coyaud É, Ignatchenko V, Li L, Krieger JR, Taylor P, Tong J, Pham NA, Liu G, Raught B, Wouters BG, Kislinger T, Tsao MS, Moran MF (July 2015). "CHCHD2 Is Coamplified with EGFR in NSCLC and Regulates Mitochondrial Function and Cell Migration". Mol. Cancer Res. 13 (7): 1119–29. doi:10.1158/1541-7786.MCR-14-0165-T. PMID 25784717.
- Liu Z, Guo J, Li K, Qin L, Kang J, Shu L, Zhang Y, Wei Y, Yang N, Luo Y, Sun Q, Xu Q, Yan X, Tang B (November 2015). "Mutation analysis of CHCHD2 gene in Chinese familial Parkinson's disease". Neurobiol. Aging. 36 (11): 3117.e7–3117.e8. doi:10.1016/j.neurobiolaging.2015.08.010. PMID 26343503. S2CID 21297237.
- Ogaki K, Koga S, Heckman MG, Fiesel FC, Ando M, Labbé C, Lorenzo-Betancor O, Moussaud-Lamodière EL, Soto-Ortolaza AI, Walton RL, Strongosky AJ, Uitti RJ, McCarthy A, Lynch T, Siuda J, Opala G, Rudzinska M, Krygowska-Wajs A, Barcikowska M, Czyzewski K, Puschmann A, Nishioka K, Funayama M, Hattori N, Parisi JE, Petersen RC, Graff-Radford NR, Boeve BF, Springer W, Wszolek ZK, Dickson DW, Ross OA (December 2015). "Mitochondrial targeting sequence variants of the CHCHD2 gene are a risk for Lewy body disorders". Neurology. 85 (23): 2016–25. doi:10.1212/WNL.0000000000002170. PMC 4676755. PMID 26561290.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.