C3orf67

Chromosome 3 open reading frame 67 or C3orf67 is a protein that in humans is encoded by the gene C3orf67.[5][6] The function of C3orf67 is not yet fully understood.

CFAP20DC
Identifiers
AliasesCFAP20DC, chromosome 3 open reading frame 67, C3orf67, CFAP20 domain containing
External IDsMGI: 1926154 HomoloGene: 18873 GeneCards: CFAP20DC
Orthologs
SpeciesHumanMouse
Entrez

200844

74430

Ensembl

ENSG00000163689

ENSMUSG00000021747

UniProt

Q6ZVT6

Q6P2K3

RefSeq (mRNA)

NM_028934

RefSeq (protein)

NP_083210

Location (UCSC)Chr 3: 58.72 – 59.05 MbChr 14: 13.8 – 14.04 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Gene

C3orf67 is located at 3p14.2 on the reverse strand ranging from 58716417 to 59050045 base pairs.[7][5] The accession number is NP_001338459.1.[8]

Protein

Map of C3orf67 with exon/exon boundaries, conserved domains, and highly conserved regions.

Primary sequence and isoforms

The coding sequence is 402-2681 base pairs of 3135 base pairs,[7] making up 759 amino acids.[5][8] C3orf67 has six validated isoforms.[5] Isoform one is the most complete with 16 exons.[7] C3orf67 weighs 84.35 kilodaltons.[9]

Domains and motifs

There are three functional domains identified for C3orf67[10]

Post-translational modifications

Map of conserved PTMs for C3orf67.

Several post-translational modifications have been predicted for C3orf67 in conserved regions using various bioinformatic prediction tools[11][12][13][14][15][16][17][18]

Secondary structure

The beginning of C3orf67 is predicted to consist of a series of beta strands and a couple alpha helices that coincide with the DUF667 domain. There are also alpha helices predicted in regions that correspond to the CM_mono2 and OCRE domains.[19][20][21]

Tertiary structure

Predicted tertiary structure of DUF667 region of C3orf67.

The DUF667 region is predicted to form a tube-like structure from a series of beta sheets.[21]

Homology and Evolution

Paralogs

There are no known paralogs of C3orf67.

Orthologs

Orthologs have been identified for C3orf67 in species ranging from fungus, plants, hemichordates, parasites, fish, reptiles, birds, invertebrates, and mammals.

Variety of orthologous species of C3orf67.
Species Common Name Date of Divergence (MYA) Accession Number Sequence Length (aa) % Identity
Orbicella faveolata Mountainous star coral 824 XP_020630732.1 / XP_020630739.1 849 32.20%
Exaiptasia pallida Pale anemone 824 XP_020899564.1 797 32.00%
Acanthaster planci Crown-of-thorns starfish 684 XP_022107809.1 976 31.60%
Stylophora pistillata Smooth cauliflower coral 824 XP_022782397.1 825 30.80%
Crassostrea gigas Pacific oyster 797 XP_011453705.1 950 29.50%
Lingula anatina Lamp shell 797 XP_013404893.1 1077 29.30%
Octopus bimaculoides California two-spotted octopus 797 XP_014778712.1 902 29.10%
Saccoglossus kowalevskii Acorn worm 684 XP_006821003.1 596 23.30%
Amphimedon queenslandica Sponge 951.8 XP_011402616.1 508 22.70%
Mutation rate of C3orf67.

Distant homologs

Most distant homologs of C3orf67.
Species Common Name Date of Divergence (MYA) Accession Number Sequence Length (aa) % Identity
Trichinella spiralis Trichina worm 797 XP_003374081.1 393 12.60%
Spizellomyces punctatus Unknown 1105 XP_016608387.1 183 8.20%
Selaginella moellendorffii Spikemoss 1496 XP_002989784.1 209 6.00%

Expression

Promoter

The promoter is well conserved across humans, gibbons, baboons, orangutans, cats, squirrels, alpacas, rabbits and mice.[22] There are several high quality transcription factor binding sites.[23] There are also several stem-loop structures that are predicted to be formed in the promoter region, some of which overlap with transcription factor binding sites.[24]

General tissue expression pattern of C3orf67.

Expression

C3orf67 is prominently expressed in the liver, tonsils, trachea, ovaries, testis, placenta, and colon. In other tissues it is expressed at low levels.[25] An increase in expression has been linked to small cell lung cancer.[26]

Function

The protein has been identified as one of seventeen (17) genes that may play a novel role in the intersection of tumor promotion and DNA-damaging stress and may be linked to carcinogenesis.[27]

Interacting Proteins

Transcription factors

There are three notable transcription factors that are known to be involved in the regulation of cell growth or immune responses:

Other interacting proteins

Several other proteins have been predicted to interact with C3orf67:

References

  1. GRCh38: Ensembl release 89: ENSG00000163689 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000021747 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "NCBI Gene". National Center for Biotechnology Information.
  6. "C3orf67". GeneCards Human Gene Database.
  7. "NCBI Nucleotide". National Center for Biotechnology Information. May 2019.
  8. "NCBI Protein". National Center for Biotechnology Information.
  9. "Protein Molecular Weight Calculator". www.sciencegateway.org. Retrieved 2018-02-25.
  10. "MOTIF: Searching Protein Sequence Motifs". www.genome.jp. Retrieved 2018-02-25.
  11. "DictyOGlyc 1.1 Server". www.cbs.dtu.dk. Retrieved 2018-04-30.
  12. "GPS-SUMO: Prediction of SUMOylation Sites & SUMO-interaction Motifs". sumosp.biocuckoo.org. Retrieved 2018-04-30.
  13. "ExPASy - Sulfinator tool". web.expasy.org. Retrieved 2018-04-30.
  14. "SUMOplot™ Analysis Program | Abgent". www.abgent.com. Retrieved 2018-04-30.
  15. "C3orf67 (human)". www.phosphosite.org. Retrieved 2018-04-30.
  16. "NetOGlyc 4.0 Server". www.cbs.dtu.dk. Retrieved 2018-04-30.
  17. "YinOYang 1.2 Server". www.cbs.dtu.dk. Retrieved 2018-04-30.
  18. "NetPhos 3.1 Server". www.cbs.dtu.dk. Retrieved 2018-04-30.
  19. "JPred: A Protein Secondary Structure Prediction Server". www.compbio.dundee.ac.uk. Retrieved 2018-04-24.
  20. Kelley, Lawrence. "PHYRE2 Protein Fold Recognition Server". www.sbg.bio.ic.ac.uk. Retrieved 2018-04-24.
  21. "SWISS-MODEL | Workspace". swissmodel.expasy.org. Retrieved 2018-04-24.
  22. "Human BLAT Search". genome.ucsc.edu. Retrieved 2018-04-24.
  23. "Genomatix: Matrix Library information". www.genomatix.de. Retrieved 2018-04-24.
  24. "RNA Folding Form | mfold.rit.albany.edu". unafold.rna.albany.edu. Retrieved 2018-05-02.
  25. Dezso Z, Nikolsky Y, Sviridov E, Shi W, Serebriyskaya T, Dosymbekov D, Bugrim A, Rakhmatulin E, Brennan RJ, Guryanov A, Li K, Blake J, Samaha RR, Nikolskaya T (November 2008). "A comprehensive functional analysis of tissue specificity of human gene expression". BMC Biology. 6: 49. doi:10.1186/1741-7007-6-49. PMC 2645369. PMID 19014478.
  26. Sato T, Kaneda A, Tsuji S, Isagawa T, Yamamoto S, Fujita T, Yamanaka R, Tanaka Y, Nukiwa T, Marquez VE, Ishikawa Y, Ichinose M, Aburatani H (2013-05-29). "PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer". Scientific Reports. 3 (1): 1911. Bibcode:2013NatSR...3E1911S. doi:10.1038/srep01911. PMC 3665955. PMID 23714854.
  27. Glover KP, Chen Z, Markell LK, Han X (2 October 2015). "Synergistic Gene Expression Signature Observed in TK6 Cells upon Co-Exposure to UVC-Irradiation and Protein Kinase C-Activating Tumor Promoters". PLOS ONE. 10 (10): e0139850. Bibcode:2015PLoSO..1039850G. doi:10.1371/journal.pone.0139850. PMC 4592187. PMID 26431317.
  28. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE (March 1998). "Human Smad3 and Smad4 are sequence-specific transcription activators". Molecular Cell. 1 (4): 611–7. doi:10.1016/S1097-2765(00)80061-1. PMID 9660945.
  29. "Genomatix: Matrix Library information". www.genomatix.de. Retrieved 2018-04-24.
  30. Treiber T, Mandel EM, Pott S, Györy I, Firner S, Liu ET, Grosschedl R (May 2010). "Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin". Immunity. 32 (5): 714–25. doi:10.1016/j.immuni.2010.04.013. PMID 20451411.
  31. "Genomatix: Matrix Library information". www.genomatix.de. Retrieved 2018-04-24.
  32. Molnár A, Georgopoulos K (December 1994). "The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins". Molecular and Cellular Biology. 14 (12): 8292–303. doi:10.1128/MCB.14.12.8292. PMC 359368. PMID 7969165.
  33. Lipp JJ, Marvin MC, Shokat KM, Guthrie C (August 2015). "SR protein kinases promote splicing of nonconsensus introns". Nature Structural & Molecular Biology. 22 (8): 611–7. doi:10.1038/nsmb.3057. PMID 26167880. S2CID 24363149.
  34. "Antibodypedia - CLK1 antibodies". www.antibodypedia.com. Retrieved 2018-05-01.
  35. Mikolcevic P, Sigl R, Rauch V, Hess MW, Pfaller K, Barisic M, Pelliniemi LJ, Boesl M, Geley S (February 2012). "Cyclin-dependent kinase 16/PCTAIRE kinase 1 is activated by cyclin Y and is essential for spermatogenesis". Molecular and Cellular Biology. 32 (4): 868–79. doi:10.1128/MCB.06261-11. PMC 3272973. PMID 22184064.
  36. "Antibodypedia - CDK16 antibodies". www.antibodypedia.com. Retrieved 2018-05-01.
  37. van Meel E, Wegner DJ, Cliften P, Willing MC, White FV, Kornfeld S, Cole FS (October 2013). "Rare recessive loss-of-function methionyl-tRNA synthetase mutations presenting as a multi-organ phenotype". BMC Medical Genetics. 14: 106. doi:10.1186/1471-2350-14-106. PMC 3852179. PMID 24103465.
  38. "STRING: functional protein association networks". string-db.org. Retrieved 2018-05-01.
  39. Cornen S, Guille A, Adélaïde J, Addou-Klouche L, Finetti P, Saade MR, Manai M, Carbuccia N, Bekhouche I, Letessier A, Raynaud S, Charafe-Jauffret E, Jacquemier J, Spicuglia S, de The H, Viens P, Bertucci F, Birnbaum D, Chaffanet M (2014-01-09). "Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling". PLOS ONE. 9 (1): e81843. Bibcode:2014PLoSO...981843C. doi:10.1371/journal.pone.0081843. PMC 3886975. PMID 24416132.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.