Brieskorn manifold

In mathematics, a Brieskorn manifold or Brieskorn–Phạm manifold, introduced by Egbert Brieskorn (1966, 1966b), is the intersection of a small sphere around the origin with the singular, complex hypersurface

studied by Frédéric Pham (1965).

Brieskorn manifolds give examples of exotic spheres.

References

  • Brieskorn, Egbert V. (1966), "Examples of singular normal complex spaces which are topological manifolds", Proceedings of the National Academy of Sciences, 55 (6): 1395–1397, doi:10.1073/pnas.55.6.1395, MR 0198497, PMC 224331, PMID 16578636
  • Brieskorn, Egbert (1966b), "Beispiele zur Differentialtopologie von Singularitäten", Inventiones Mathematicae, 2 (1): 1–14, doi:10.1007/BF01403388, MR 0206972, S2CID 123268657
  • Hirzebruch, Friedrich; Mayer, Karl Heinz (1968), O(n)-Mannigfaligkeiten, Exotische Sphären und Singularitäten, Lecture Notes in Mathematics, vol. 57, Berlin-New York: Springer-Verlag, doi:10.1007/BFb0074355, ISBN 978-3-540-04227-3, MR 0229251 This book describes Brieskorn's work relating exotic spheres to singularities of complex manifolds.
  • Pham, Frédéric (1965), "Formules de Picard-Lefschetz généralisées et ramification des intégrales", Bulletin de la Société Mathématique de France, 93: 333–367, doi:10.24033/bsmf.1628, ISSN 0037-9484, MR 0195868
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.