Bonnesen's inequality
Bonnesen's inequality is an inequality relating the length, the area, the radius of the incircle and the radius of the circumcircle of a Jordan curve. It is a strengthening of the classical isoperimetric inequality.
More precisely, consider a planar simple closed curve of length bounding a domain of area . Let and denote the radii of the incircle and the circumcircle. Bonnesen proved the inequality
The term in the right hand side is known as the isoperimetric defect.
Loewner's torus inequality with isosystolic defect is a systolic analogue of Bonnesen's inequality.
References
- Bonnesen, T. (1921), "Sur une amélioration de l'inégalité isopérimetrique du cercle et la démonstration d'une inégalité de Minkowski", Comptes rendus hebdomadaires des séances de l'Académie des Sciences (in French), 172: 1087–1089, JFM 48.0839.01
- Burago, Yu. D.; Zalgaller, V. A. (1988), "1.3: The Bonnesen inequality and its analogues", Geometric Inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, translated by Sosinskiĭ, A. B., Berlin: Springer-Verlag, pp. 3–4, doi:10.1007/978-3-662-07441-1, ISBN 3-540-13615-0, MR 0936419, Zbl 0633.53002
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.