Arithmetical ring
In algebra, a commutative ring R is said to be arithmetical (or arithmetic) if any of the following equivalent conditions hold:
- The localization of R at is a uniserial ring for every maximal ideal of R.
- For all ideals , and ,
- For all ideals , and ,
The last two conditions both say that the lattice of all ideals of R is distributive.
An arithmetical domain is the same thing as a Prüfer domain.
References
- Boynton, Jason (2007). "Pullbacks of arithmetical rings". Commun. Algebra. 35 (9): 2671–2684. doi:10.1080/00927870701351294. ISSN 0092-7872. S2CID 120927387. Zbl 1152.13015.
- Fuchs, Ladislas (1949). "Über die Ideale arithmetischer Ringe". Comment. Math. Helv. (in German). 23: 334–341. doi:10.1007/bf02565607. ISSN 0010-2571. S2CID 121260386. Zbl 0040.30103.
- Larsen, Max D.; McCarthy, Paul Joseph (1971). Multiplicative theory of ideals. Pure and Applied Mathematics. Vol. 43. Academic Press. pp. 150–151. ISBN 0080873561. Zbl 0237.13002.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.