Nuclear receptor coactivator 3

The nuclear receptor coactivator 3 also known as NCOA3 is a protein that, in humans, is encoded by the NCOA3 gene.[5][6] NCOA3 is also frequently called 'amplified in breast 1' (AIB1), steroid receptor coactivator-3 (SRC-3), or thyroid hormone receptor activator molecule 1 (TRAM-1).

NCOA3
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesNCOA3, ACTR, AIB-1, AIB1, CAGH16, CTG26, KAT13B, RAC3, SRC-3, SRC3, TNRC14, TNRC16, TRAM-1, bHLHe42, pCIP, nuclear receptor coactivator 3
External IDsOMIM: 601937 MGI: 1276535 HomoloGene: 4764 GeneCards: NCOA3
Orthologs
SpeciesHumanMouse
Entrez

8202

17979

Ensembl

ENSG00000124151

ENSMUSG00000027678

UniProt

Q9Y6Q9

O09000

RefSeq (mRNA)

NM_181659
NM_001174087
NM_001174088
NM_006534

NM_008679
NM_001374779

RefSeq (protein)

NP_001167558
NP_001167559
NP_006525
NP_858045

n/a

Location (UCSC)Chr 20: 47.5 – 47.66 MbChr 2: 165.99 – 166.07 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

NCOA3 is a transcriptional coactivator protein that contains several nuclear receptor interacting domains and an intrinsic histone acetyltransferase activity. NCOA3 is recruited to DNA promotion sites by ligand-activated nuclear receptors. NCOA3, in turn, acylates histones, which makes downstream DNA more accessible to transcription. Hence, NCOA3 assists nuclear receptors in the upregulation of gene expression.[7][8]

Clinical significance

The ratio of PAX2 to AIB-1 protein expression may be predictive of the effectiveness of tamoxifen in breast cancer treatment.[9][10]

Several molecular mechanisms implicate NCOA3 (AIB1) in the endocrine therapy resistance (depicted in the figure). Signaling pathways or mutations (i.e. HER2/neu overexpression, activating mutations in PIK3CA (PI3K), activating mutations in the proto-oncogene tyrosine-protein kinase Src, etc.) that lead to persistent activation of ERK and/or PIK3CA/AKT kinase pathways result, in one hand in an enhanced AIB1 transcriptional coactivation capacity,[11] and in the other hand in the inhibition of the proteasome-dependent AIB1 turn-over and therefore, in AIB1 overexpression.[12] In both conditions, the equilibrium of estrogen receptor (ER) complex formation is displaced towards a transcriptionally active complex and thus, counteracting the inhibition caused by anti-estrogenic drugs such as tamoxifen or fulvestrant (selective estrogen receptor modulators). The result is the restoration of estrogen-sensitive gene transcription and the promotion of cancer progression and/or relapse.

Notably, tumors diagnosed with concomitant overexpression of AIB1 and HER2/neu have worse outcome with tamoxifen therapy than all other patients combined.[13] In addition, dormant tumor cells of luminal breast cancers treated with endocrine therapy may acquire with time, mutations that alter kinase signalling pathways and ultimately enhance AIB1 oncogenic functions. Also, estrogen receptor-PAX2 complexes repress HER2/neu expression, but loss of PAX2 expression may result in de novo HER2/neu expression and initiate endocrine therapy resistance and relapse.[14]

Mechanisms for AIB1-dependent anti-estrogen therapy resistance

Interactions

Nuclear receptor coactivator 3 has been shown to interact with:

References

  1. GRCh38: Ensembl release 89: ENSG00000124151 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000027678 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (August 1997). "AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer". Science. 277 (5328): 965–8. doi:10.1126/science.277.5328.965. PMID 9252329.
  6. Takeshita A, Cardona GR, Koibuchi N, Suen CS, Chin WW (October 1997). "TRAM-1, A novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1". J. Biol. Chem. 272 (44): 27629–34. doi:10.1074/jbc.272.44.27629. PMID 9346901.
  7. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997). "AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer". Science. 277 (5328): 965–8. doi:10.1126/science.277.5328.965. PMID 9252329.
  8. Takeshita A, Cardona GR, Koibuchi N, Suen CS, Chin WW (1997). "TRAM-1, A novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1". J Biol Chem. 272 (44): 27629–34. doi:10.1074/jbc.272.44.27629. PMID 9346901.
  9. "Study sheds new light on tamoxifen resistance". Cordis News. Cordis. 2008-11-13. Archived from the original on 2009-02-20. Retrieved 2008-11-14.
  10. Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M, et al. (December 2008). "Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen". Nature. 456 (7222): 663–6. Bibcode:2008Natur.456..663H. doi:10.1038/nature07483. PMC 2920208. PMID 19005469.
  11. Font de Mora J, Brown M (July 2000). "AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor". Molecular and Cellular Biology. 20 (14): 5041–7. doi:10.1128/MCB.20.14.5041-5047.2000. PMC 85954. PMID 10866661.
  12. Ferrero M, Avivar A, García-Macías MC, Font de Mora J (July 2008). "Phosphoinositide 3-kinase/AKT signaling can promote AIB1 stability independently of GSK3 phosphorylation". Cancer Research. 68 (13): 5450–9. doi:10.1158/0008-5472.CAN-07-6433. PMID 18593948.
  13. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, et al. (March 2003). "Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer". Journal of the National Cancer Institute. 95 (5): 353–61. doi:10.1093/jnci/95.5.353. PMID 12618500.
  14. Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M, et al. (December 2008). "Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen". Nature. 456 (7222): 663–6. Bibcode:2008Natur.456..663H. doi:10.1038/nature07483. PMC 2920208. PMID 19005469.
  15. Tan JA, Hall SH, Petrusz P, French FS (September 2000). "Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator". Endocrinology. 141 (9): 3440–50. doi:10.1210/endo.141.9.7680. PMID 10965917.
  16. Gnanapragasam VJ, Leung HY, Pulimood AS, Neal DE, Robson CN (December 2001). "Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer". Br. J. Cancer. 85 (12): 1928–36. doi:10.1054/bjoc.2001.2179. PMC 2364015. PMID 11747336.
  17. Wang Q, Udayakumar TS, Vasaitis TS, Brodie AM, Fondell JD (April 2004). "Mechanistic relationship between androgen receptor polyglutamine tract truncation and androgen-dependent transcriptional hyperactivity in prostate cancer cells". J. Biol. Chem. 279 (17): 17319–28. doi:10.1074/jbc.M400970200. PMID 14966121.
  18. Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ, O'Malley BW (May 2002). "Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase". Mol. Cell. Biol. 22 (10): 3549–61. doi:10.1128/MCB.22.10.3549-3561.2002. PMC 133790. PMID 11971985.
  19. Naltner A, Wert S, Whitsett JA, Yan C (December 2000). "Temporal/spatial expression of nuclear receptor coactivators in the mouse lung". Am. J. Physiol. Lung Cell Mol. Physiol. 279 (6): L1066-74. doi:10.1152/ajplung.2000.279.6.l1066. PMID 11076796. S2CID 27872061.
  20. Watanabe M, Yanagisawa J, Kitagawa H, Takeyama K, Ogawa S, Arao Y, Suzawa M, Kobayashi Y, Yano T, Yoshikawa H, Masuhiro Y, Kato S (March 2001). "A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA". EMBO J. 20 (6): 1341–52. doi:10.1093/emboj/20.6.1341. PMC 145523. PMID 11250900.
  21. Wong CW, Komm B, Cheskis BJ (June 2001). "Structure-function evaluation of ER alpha and beta interplay with SRC family coactivators. ER selective ligands". Biochemistry. 40 (23): 6756–65. doi:10.1021/bi010379h. PMID 11389589.
  22. Tikkanen MK, Carter DJ, Harris AM, Le HM, Azorsa DO, Meltzer PS, Murdoch FE (November 2000). "Endogenously expressed estrogen receptor and coactivator AIB1 interact in MCF-7 human breast cancer cells". Proc. Natl. Acad. Sci. U.S.A. 97 (23): 12536–40. Bibcode:2000PNAS...9712536T. doi:10.1073/pnas.220427297. PMC 18799. PMID 11050174.
  23. Leo C, Li H, Chen JD (February 2000). "Differential mechanisms of nuclear receptor regulation by receptor-associated coactivator 3". J. Biol. Chem. 275 (8): 5976–82. doi:10.1074/jbc.275.8.5976. PMID 10681591.
  24. Hsiao PW, Fryer CJ, Trotter KW, Wang W, Archer TK (September 2003). "BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation". Mol. Cell. Biol. 23 (17): 6210–20. doi:10.1128/MCB.23.17.6210-6220.2003. PMC 180928. PMID 12917342.
  25. Zilliacus J, Holter E, Wakui H, Tazawa H, Treuter E, Gustafsson JA (April 2001). "Regulation of glucocorticoid receptor activity by 14--3-3-dependent intracellular relocalization of the corepressor RIP140". Mol. Endocrinol. 15 (4): 501–11. doi:10.1210/mend.15.4.0624. PMID 11266503.
  26. Kodera Y, Takeyama K, Murayama A, Suzawa M, Masuhiro Y, Kato S (October 2000). "Ligand type-specific interactions of peroxisome proliferator-activated receptor gamma with transcriptional coactivators". J. Biol. Chem. 275 (43): 33201–4. doi:10.1074/jbc.C000517200. PMID 10944516.
  27. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM (August 1997). "Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300". Cell. 90 (3): 569–80. doi:10.1016/S0092-8674(00)80516-4. PMID 9267036. S2CID 15284825.
  28. Lee WY, Noy N (February 2002). "Interactions of RXR with coactivators are differentially mediated by helix 11 of the receptor's ligand binding domain". Biochemistry. 41 (8): 2500–8. doi:10.1021/bi011764+. PMID 11851396.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.