3,4-dihydroxy-2-butanone-4-phosphate synthase
The enzyme 3,4-dihydroxy-2-butanone 4-phosphate synthase (DHBP synthase) (RibB) EC 4.1.99.12 catalyses the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate, the latter serving as the biosynthetic precursor for the xylene ring of riboflavin.[1] In Photobacterium leiognathi, the riboflavin synthesis genes ribB (DHBP synthase), ribE (riboflavin synthase), ribH (lumazine synthase) and ribA (GTP cyclohydrolase II) all reside in the lux operon.[2] RibB is sometimes found as a bifunctional enzyme with GTP cyclohydrolase II that catalyses the first committed step in the biosynthesis of riboflavin. No sequences with significant homology to DHBP synthase are found in the metazoa.
DHBP_synthase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | DHBP_synthase | ||||||||
Pfam | PF00926 | ||||||||
InterPro | IPR000422 | ||||||||
SCOP2 | 1iez / SCOPe / SUPFAM | ||||||||
|
References
- Richter G, Krieger C, Volk R, Kis K, Ritz H, Götze E, Bacher A (1997). Biosynthesis of riboflavin: 3,4-dihydroxy-2-butanone-4-phosphate synthase. Methods in Enzymology. Vol. 280. pp. 374–82. doi:10.1016/S0076-6879(97)80128-0. PMID 9211332.
- Lin JW, Chao YF, Weng SF (June 2001). "Riboflavin synthesis genes ribE, ribB, ribH, ribA reside in the lux operon of Photobacterium leiognathi". Biochemical and Biophysical Research Communications. 284 (3): 587–95. doi:10.1006/bbrc.2001.5013. PMID 11396941.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.