1. Probability spaces
  2. Conditional probability
  3. Independence
  4. Random variables

Probabilities on finite sets

  1. Finite probability spaces
  2. Random variables on finite probability spaces
  3. Sums of independent random variables on finite probability spaces

Probability and measure theory

Laws of large numbers

Central limit theorems

Sources

  • von Mises, Richard (1964). Mathematical Theory of Probability and Statistics. New York and London: Academic Press. 
  • Kolmogorov, Andrey (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer. 
  • Itô, Kiyosi (1984). Introduction to probability theory. Cambridge u.a., Univ. Pr.. 
  • Kallenberg, Olav (1997). Foundations of modern probability. New York: Springer. 
  • Loève, Michel (1963). Probability Theory I. D. van Nostrand. 
 
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.