< OpenSCAD User Manual
Dodecahedron
//create a dodecahedron by intersecting 6 boxes module dodecahedron(height) { scale([height,height,height]) //scale by height parameter { intersection(){ //make a cube cube([2,2,1], center = true); intersection_for(i=[0:4]) //loop i from 0 to 4, and intersect results { //make a cube, rotate it 116.565 degrees around the X axis, //then 72*i around the Z axis rotate([0,0,72*i]) rotate([116.565,0,0]) cube([2,2,1], center = true); } } } } //create 3 stacked dodecahedra //call the module with a height of 1 and move up 2 translate([0,0,2])dodecahedron(1); //call the module with a height of 2 dodecahedron(2); //call the module with a height of 4 and move down 4 translate([0,0,-4])dodecahedron(4); |
|
Icosahedron
// create an icosahedron by intersecting 3 orthogonal golden-ratio rectangles module icosahedron(size) { phi=0.5*(sqrt(5)+1); // golden ratio st=size/10000; // microscopic sheet thickness hull() { cube([size*phi,size,st], true); rotate([90,90,0]) cube([size*phi,size,st], true); rotate([90,0,90]) cube([size*phi,size,st], true); } } // display the 3 internal sheets alongside the icosahedron phi=0.5*(sqrt(5)+1); size=10; translate([-20,0,0]) union() { cube([size*phi,size,0.01], true); rotate([90,90,0]) cube([size*phi,size,0.01], true); rotate([90,0,90]) cube([size*phi,size,0.01], true); } icosahedron(size); |
|
Half-pyramid
An upside-down half-pyramid is a useful shape for 3D printing a support for an overhang protruding from a vertical wall. With sloping sides no steeper than 45°, no removable support structure needs to be printed.
While a half-pyramid can be made with a 4-sided cone (using the cylinder primitive) and subtracting a cube from half of it, the shape can be easily made in one operation by a scaled linear extrude of a rectangle having the middle of one edge on the origin.
// Create a half-pyramid from a single linear extrusion module halfpyramid(base, height) { linear_extrude(height, scale=0.01) translate([-base/2, 0, 0]) square([base, base/2]); } halfpyramid(20, 10); |
|
Bounding Box
// Rather kludgy module for determining bounding box from intersecting projections module BoundingBox() { intersection() { translate([0,0,0]) linear_extrude(height = 1000, center = true, convexity = 10, twist = 0) projection(cut=false) intersection() { rotate([0,90,0]) linear_extrude(height = 1000, center = true, convexity = 10, twist = 0) projection(cut=false) rotate([0,-90,0]) children(0); rotate([90,0,0]) linear_extrude(height = 1000, center = true, convexity = 10, twist = 0) projection(cut=false) rotate([-90,0,0]) children(0); } rotate([90,0,0]) linear_extrude(height = 1000, center = true, convexity = 10, twist = 0) projection(cut=false) rotate([-90,0,0]) intersection() { rotate([0,90,0]) linear_extrude(height = 1000, center = true, convexity = 10, twist = 0) projection(cut=false) rotate([0,-90,0]) children(0); rotate([0,0,0]) linear_extrude(height = 1000, center = true, convexity = 10, twist = 0) projection(cut=false) rotate([0,0,0]) children(0); } } } // Test module on ellipsoid translate([0,0,40]) scale([1,2,3]) sphere(r=5); BoundingBox() scale([1,2,3]) sphere(r=5); |
|
Linear Extrude extended use examples
Linear Extrude with Scale as an interpolated function
//Linear Extrude with Scale as an interpolated function // This module does not need to be modified, // - unless default parameters want to be changed // - or additional parameters want to be forwarded (e.g. slices,...) module linear_extrude_fs(height=1,isteps=20,twist=0){ //union of piecewise generated extrudes union(){ for(i = [ 0: 1: isteps-1]){ //each new piece needs to be adjusted for height translate([0,0,i*height/isteps]) linear_extrude( height=height/isteps, twist=twist/isteps, scale=f_lefs((i+1)/isteps)/f_lefs(i/isteps) ) // if a twist constant is defined it is split into pieces rotate([0,0,-(i/isteps)*twist]) // each new piece starts where the last ended scale(f_lefs(i/isteps)) obj2D_lefs(); } } } // This function defines the scale function // - Function name must not be modified // - Modify the contents/return value to define the function function f_lefs(x) = let(span=150,start=20,normpos=45) sin(x*span+start)/sin(normpos); // This module defines the base 2D object to be extruded // - Function name must not be modified // - Modify the contents to define the base 2D object module obj2D_lefs(){ translate([-4,-3]) square([9,12]); } //Top rendered object demonstrating the interpolation steps translate([0,0,25]) linear_extrude_fs(height=20,isteps=4); linear_extrude_fs(height=20); //Bottom rendered object demonstrating the inclusion of a twist translate([0,0,-25]) linear_extrude_fs(height=20,twist=90,isteps=30); |
|
Linear Extrude with Twist as an interpolated function
//Linear Extrude with Twist as an interpolated function // This module does not need to be modified, // - unless default parameters want to be changed // - or additional parameters want to be forwarded (e.g. slices,...) module linear_extrude_ft(height=1,isteps=20,scale=1){ //union of piecewise generated extrudes union(){ for(i = [ 0: 1: isteps-1]){ //each new piece needs to be adjusted for height translate([0,0,i*height/isteps]) linear_extrude( height=height/isteps, twist=f_left((i+1)/isteps)-f_left((i)/isteps), scale=(1-(1-scale)*(i+1)/isteps)/(1-(1-scale)*i/isteps) ) //Rotate to next start point rotate([0,0,-f_left(i/isteps)]) //Scale to end of last piece size scale(1-(1-scale)*(i/isteps)) obj2D_left(); } } } // This function defines the twist function // - Function name must not be modified // - Modify the contents/return value to define the function function f_left(x) = let(twist=90,span=180,start=0) twist*sin(x*span+start); // This module defines the base 2D object to be extruded // - Function name must not be modified // - Modify the contents to define the base 2D object module obj2D_left(){ translate([-4,-3]) square([12,9]); } //Left rendered object demonstrating the interpolation steps translate([-20,0]) linear_extrude_ft(height=30,isteps=5); linear_extrude_ft(height=30); //Right rendered object demonstrating the scale inclusion translate([25,0]) linear_extrude_ft(height=30,scale=3); |
|
Linear Extrude with Twist and Scale as interpolated functions
//Linear Extrude with Twist and Scale as interpolated functions // This module does not need to be modified, // - unless default parameters want to be changed // - or additional parameters want to be forwarded module linear_extrude_ftfs(height=1,isteps=20,slices=0){ //union of piecewise generated extrudes union(){ for(i=[0:1:isteps-1]){ translate([0,0,i*height/isteps]) linear_extrude( height=height/isteps, twist=leftfs_ftw((i+1)/isteps)-leftfs_ftw(i/isteps), scale=leftfs_fsc((i+1)/isteps)/leftfs_fsc(i/isteps), slices=slices ) rotate([0,0,-leftfs_ftw(i/isteps)]) scale(leftfs_fsc(i/isteps)) obj2D_leftfs(); } } } // This function defines the scale function // - Function name must not be modified // - Modify the contents/return value to define the function function leftfs_fsc(x)= let(scale=3,span=140,start=20) scale*sin(x*span+start); // This function defines the twist function // - Function name must not be modified // - Modify the contents/return value to define the function function leftfs_ftw(x)= let(twist=30,span=360,start=0) twist*sin(x*span+start); // This module defines the base 2D object to be extruded // - Function name must not be modified // - Modify the contents to define the base 2D object module obj2D_leftfs(){ square([12,9]); } //Left rendered objects demonstrating the steps effect translate([0,-50,-60]) rotate([0,0,90]) linear_extrude_ftfs(height=50,isteps=3); translate([0,-50,0]) linear_extrude_ftfs(height=50,isteps=3); //Center rendered objects demonstrating the slices effect translate([0,0,-60]) rotate([0,0,90]) linear_extrude_ftfs(height=50,isteps=3,slices=20); linear_extrude_ftfs(height=50,isteps=3,slices=20); //Right rendered objects with default parameters translate([0,50,-60]) rotate([0,0,90]) linear_extrude_ftfs(height=50); translate([0,50,0]) linear_extrude_ftfs(height=50); |
|
Rocket
// increase the visual detail
$fn = 100;
// the main body :
// a cylinder
rocket_d = 30; // 3 cm wide
rocket_r = rocket_d / 2;
rocket_h = 100; // 10 cm tall
cylinder(d = rocket_d, h = rocket_h);
// the head :
// a cone
head_d = 40; // 4 cm wide
head_r = head_d / 2;
head_h = 40; // 4 cm tall
// prepare a triangle
tri_base = head_r;
tri_height = head_h;
tri_points = [[0, 0],
[tri_base, 0],
[0, tri_height]];
// rotation around X-axis and then 360° around Z-axis
// put it on top of rocket's body
translate([0,0,rocket_h])
rotate_extrude(angle = 360)
polygon(tri_points);
// the wings :
// 3x triangles
wing_w = 2; // 2 mm thick
many = 3; // 3x wings
wing_l = 40; // length
wing_h = 40; // height
wing_points = [[0,0],[wing_l,0],[0,wing_h]];
module wing() {
// let it a bit inside the main body
in_by = 1; // 1 mm
// set it up on the rocket's perimeter
translate([rocket_r - in_by,0,0])
// set it upright by rotating around X-axis
rotate([90,0,0])
// set some width and center it
linear_extrude(height = wing_w,center = true)
// make a triangle
polygon(wing_points);
}
for (i = [0: many - 1])
rotate([0, 0, 360 / many * i])
wing();
Horns
// The idea is to twist a translated circle:
// -
/*
linear_extrude(height = 10, twist = 360, scale = 0)
translate([1,0])
circle(r = 1);
*/
module horn(height = 10, radius = 3,
twist = 720, $fn = 50)
{
// A centered circle translated by 1xR and
// twisted by 360° degrees, covers a 2x(2xR) space.
// -
radius = radius/4;
// De-translate.
// -
translate([-radius,0])
// The actual code.
// -
linear_extrude(height = height, twist = twist,
scale=0, $fn = $fn)
translate([radius,0])
circle(r=radius);
}
translate([3,0])
mirror()
horn();
translate([-3,0])
horn();
Strandbeest
See the Strandbeest example here.
Previous
Next
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.