< Engineering Acoustics

d'Alembert Solutions

In 1747, Jean Le Rond d'Alembert published a solution to the one-dimensional wave equation.

The general solution, now known as the d'Alembert method, can be found by introducing two new variables:

and


and then applying the chain rule to the general form of the wave equation.

From this, the solution can be written in the form:


where f and g are arbitrary functions, that represent two waves traveling in opposing directions.

A more detailed look into the proof of the d'Alembert solution can be found here.

Example of Time Domain Solution

If f(ct-x) is plotted vs. x for two instants in time, the two waves are the same shape but the second displaced by a distance of c(t2-t1) to the right.

The two arbitrary functions could be determined from initial conditions or boundary values.

Back to Main page

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.