< Digital Signal Processing 
 
 
      This page lists some of the transforms from the book, explains their uses, and lists some transform pairs of common functions.
Continuous-Time Fourier Transform (CTFT)
[CTFT]
CTFT Table
| Time Domain | Frequency Domain | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | ||||||||||||
| 2 | ||||||||||||
| 3 | ||||||||||||
| 4 | ||||||||||||
| 5 | ||||||||||||
| 6 | ||||||||||||
| 7 | ||||||||||||
| 8 | ||||||||||||
| 9 | ||||||||||||
| 10 | ||||||||||||
| 11 | ||||||||||||
| 12 | ||||||||||||
| 13 | ||||||||||||
| 14 | ||||||||||||
| 15 | ||||||||||||
| 16 | ||||||||||||
| Notes: | 
 | |||||||||||
Discrete-Time Fourier Transform (DTFT)
DTFT Table
| Time domain where | Frequency domain where | Remarks | 
|---|---|---|
| Definition | ||
| Here  represents the delta function which is 1 if and zero otherwise. | ||
| is 2π periodic | ||
DTFT Properties
| Property | Time domain | Frequency domain | Remarks | 
|---|---|---|---|
| Linearity | |||
| Shift in time | integer k | ||
| Shift in frequency | real number a | ||
| Time reversal | |||
| Time conjugation | |||
| Time reversal & conjugation | |||
| Derivative in frequency | |||
| Integral in frequency | |||
| Convolve in time | |||
| Multiply in time | |||
| Correlation | 
Where:
- is the convolution between two signals
- is the complex conjugate of the function x[n]
- represents the correlation between x[n] and y[n].
Discrete Fourier Transform (DFT)
DFT Table
| Time-Domain x[n] | Frequency Domain X[k] | Notes | 
|---|---|---|
| DFT Definition | ||
| Shift theorem | ||
| Real DFT | ||
Z-Transform
Z-Transform Table
Here:
- for , for
- for , otherwise
| Signal, | Z-transform, | ROC | |
|---|---|---|---|
| 1 | |||
| 2 | |||
| 3 | |||
| 4 | |||
| 5 | |||
| 6 | |||
| 7 | |||
| 8 | |||
| 9 | |||
| 10 | |||
| 11 | |||
| 12 | |||
| 13 | |||
| 14 | |||
| 15 | |||
| 16 | |||
| 17 | |||
| 18 | |||
| 19 | |||
| 20 | 
Bilinear Transform
Discrete Cosine Transform (DCT)
Haar Transform
    This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.